Vasanthi P | Structural Engineering | Best Researcher Award

Dr . Vasanthi P | Structural Engineering | Best Researcher Award

Associate Professor at Chennai Institute of Technology , India

Dr. P. Vasanthi, with a Ph.D. in Composite Structures and over 18 years of combined academic and industry experience, is a highly accomplished researcher in Civil Engineering. She has published 26 journal papers, including in Web of Science and Scopus-indexed journals, presented at international conferences, and holds a patent on enhancing recycled aggregate concrete. Her work spans sustainable construction materials, nano-technology applications, and the integration of machine learning in structural analysis. Dr. Vasanthi actively contributes to academic development through workshops, FDPs, and student mentoring. She holds certifications from NPTEL and Coursera, demonstrating a commitment to continuous learning. Her leadership roles in organizing academic events and serving on technical committees further reflect her dedication. While international collaborations and research funding could enhance her profile, her contributions thus far are significant. Dr. Vasanthi is a strong candidate for the Best Researcher Award, recognized for her innovation, academic rigor, and impact on civil engineering research.

Professional Profile 

Education🎓

Dr. P. Vasanthi holds a strong academic background in Civil Engineering, beginning with a Bachelor of Engineering (B.E.) in Civil Engineering from the Institute of Road Transport and Technology, affiliated with Bharathiar University, graduating with First Class in 2001. She pursued her Master of Engineering (M.E.) in Structural Engineering from Sathyabama University, where she graduated with First Class with Distinction in 2010, achieving a CGPA of 8.13. Further advancing her academic qualifications, she earned her Doctorate (Ph.D.) in Composite Structures from Sathyabama University in August 2021. Her educational journey reflects a consistent commitment to academic excellence and specialization in structural and composite materials. Dr. Vasanthi has further enriched her knowledge through multiple certification programs from NPTEL and Coursera in areas such as structural design, geotechnical engineering, stress management, and sustainable transportation systems. Her robust educational foundation has been pivotal in shaping her research and teaching expertise in the field of civil engineering.

Professional Experience📝

Dr. P. Vasanthi possesses a well-rounded professional background with 14 years of teaching experience and 4 years of industry experience in Civil Engineering. She began her academic career as a Lecturer at Annai JKK Sampoorani Ammal Polytechnic College and Pallavan Engineering College, gradually advancing to Assistant Professor roles at SRM Institute of Science & Technology, Sathyabama Institute of Science and Technology, and currently serves at Chennai Institute of Technology. She has also held the position of Associate Professor at Adhi College of Engineering and Technology. Her academic roles have included teaching, mentoring, coordinating student projects, organizing academic events, and setting university question papers. Prior to her academic career, she worked as a Site Engineer with Classic Builders for four years, gaining valuable hands-on experience in construction practices and site management. This combination of academic and industry experience enriches her teaching and research with practical insight, making her a well-rounded and impactful educator and researcher.

Research Interest🔎

Dr. P. Vasanthi’s research interests lie primarily in the areas of advanced construction materials, sustainable engineering, and structural analysis. She focuses extensively on concrete and construction materials, particularly the use of nano materials, recycled aggregates, and industrial waste in concrete to enhance its mechanical and durability properties. Her expertise extends to steel and composite structures, with a strong emphasis on innovative material applications in structural systems such as Concrete-Filled Steel Tube (CFST) columns. She is also deeply involved in interdisciplinary research, integrating modern technologies like machine learning, IoT, and data analytics into civil engineering applications, including structural health monitoring and predictive modeling. Her work aims to address key challenges in construction sustainability, performance optimization, and cost-effectiveness. With a growing body of publications and a patent to her name, Dr. Vasanthi’s research continues to contribute meaningful advancements in the field of civil engineering, with practical relevance and academic depth.

Award and Honor🏆

Dr. P. Vasanthi has received several recognitions and honors that reflect her dedication and contributions to the field of civil engineering. She has been awarded a Certificate of Recognition for her role as a reviewer at the Indian Structural Steel Conference held at IIT Hyderabad, highlighting her expertise in structural engineering. Additionally, she served as a Technical Review Committee Member for the National Conference on Sustainable Materials and Smart Practices (NCSMSP-2021) at Bannari Amman Institute of Technology. These accolades showcase her academic credibility and involvement in advancing research quality. She is also a Life Member of prestigious professional bodies such as the American Society of Civil Engineers (ASCE) and the National Information Centre of Earthquake Engineering (NICEE). Her active participation in technical conferences and her commitment to research excellence underline her suitability for further professional recognition, including awards such as the Best Researcher Award in the domain of civil engineering.

Research Skill🔬

Dr. P. Vasanthi possesses a diverse and well-developed set of research skills that span experimental analysis, material innovation, data interpretation, and interdisciplinary application. Her core strengths lie in designing and executing experimental studies on advanced construction materials, such as nano-modified concrete, composite structures, and recycled aggregates. She is proficient in applying statistical tools like Taguchi-Grey Relational Analysis and Response Surface Methodology for optimization studies. Additionally, her skills extend to the use of software tools like AutoCAD, STAAD Pro, and ANSYS, which support her structural modeling and simulation work. Dr. Vasanthi is also skilled in integrating machine learning and IoT-based technologies into civil engineering applications, such as crack detection and strength prediction. Her ability to publish in reputed journals and present in international conferences reflects strong academic writing, data visualization, and critical analysis abilities. Overall, her comprehensive research skill set enables her to contribute meaningfully to innovative, sustainable, and practical engineering solutions.

Conclusion💡

Dr. P. Vasanthi is a highly committed, multi-faceted academic and researcher who exhibits substantial promise and performance in civil engineering research, particularly in sustainability, structural innovation, and interdisciplinary approaches. Her diverse output, industry-aligned experience, and research contributions make her well-qualified and suitable for the Best Researcher Award.

Publications Top Noted✍

  • Publication Title: Sawdust as a sustainable additive: Comparative insights into its role in concrete and brick applications

    • Authors: P. Vasanthi, B. Prabhu, B. Priyanka Murugesan

    • Year: Not provided

    • Citations: 0

  • Publication Title: Investigation of mechanical and dynamic mechanical analysis of bamboo/olive tree leaves powder-based hybrid composites under cryogenic conditions

    • Authors: V. Ganesan Velmurugan, L. Natrayan Lakshmaiya, J.S. Singh Chohan Jasgurpreet Singh, S.S. Kaliappan, D. Arunkumar

    • Year: 2024

    • Citations: 28

  • Publication Title: Air Quality Monitoring on Congested Roads Using Smart Sensor Technology

    • Authors: P. Partheeban Pachaivannan, P. Vasanthi, M. Priyanka Murugesan, B. Madhuja, B. Vijaya

    • Year: Not provided

    • Citations: 0

 

Masoud Akbarzadeh | Architectural Structures | Best Researcher Award

Assoc. Prof. Dr Masoud Akbarzadeh | Architectural Structures | Best Researcher Award

Associate Professor of Architecture, University of Pennsylvania, United States

Masoud Akbarzadeh is an Associate Professor of Architecture in Structures at the University of Pennsylvania’s School of Design. With a background in civil and environmental engineering, architecture, and structural design, Akbarzadeh’s work bridges the gap between computational design, architecture, and engineering. He has gained recognition for his research on 3D graphic statics, funicular structures, and computational methods for optimizing structural forms. His innovative approach to structural design blends geometry, machine learning, and material science to create sustainable and efficient solutions in architecture and engineering. Akbarzadeh has contributed significantly to academic journals and conferences, influencing the future of design and construction.

Profile

Google Scholar

Orcid

Strengths for the Award

Masoud Akbarzadeh is an exceptionally qualified candidate for the Best Researcher Award due to his pioneering contributions to structural design, computational design, and material science. His research focuses on advanced topics such as 3D graphic statics, funicular structures, and the intersection of machine learning with structural design. Akbarzadeh has demonstrated expertise in creating innovative structural forms through geometric optimization, form-finding techniques, and the development of ultra-thin, sustainable materials like glass shells. He has received numerous prestigious awards, including the 2020 National Science Foundation CAREER Award, A’Design Award, and multiple cover highlights in leading journals like Advanced Science and Advanced Functional Materials. His interdisciplinary approach, which bridges architecture, engineering, and computational design, sets him apart in the field. His influential publications have garnered high citations, reflecting the significant impact of his work on both academic research and practical applications in construction.

Areas for Improvement

While Akbarzadeh’s research demonstrates a remarkable fusion of architecture, structural engineering, and computational techniques, there are potential areas for further exploration and improvement:

  1. Broader Practical Implementation: While his work focuses on theoretical and experimental design, expanding the real-world applications of these designs in large-scale projects and construction could strengthen his contributions.
  2. Collaboration with Industry: Strengthening collaborations with industry professionals to create tangible prototypes and test the viability of his designs in diverse environments could enhance his impact.
  3. Cross-Disciplinary Integration: Further expanding into interdisciplinary fields such as environmental sustainability, biomimicry, and automation in construction could open up new avenues for his research and applications.

Education 

Masoud Akbarzadeh holds a Doctor of Science (2016) from ETH Zurich, Switzerland, where he specialized in 3D graphic statics and structural design. He earned two Master’s degrees from the Massachusetts Institute of Technology (MIT): a Master of Science in Design Computation (2012) and a Master of Architecture (2011). Earlier, he obtained a Master of Science in Earthquake Engineering and Dynamics of Structures (2007) from Iran University of Science and Technology, Tehran. His educational background combines architecture, civil engineering, and advanced computational methods, establishing him as an expert in structural design and its intersection with computational tools and techniques. His academic achievements are complemented by his deep research in the fields of material science and geometric optimization.

Experience 

Masoud Akbarzadeh is currently an Associate Professor at the University of Pennsylvania’s School of Design, focusing on architecture and structures. Prior to this, he has held various academic and research positions at leading institutions such as ETH Zurich, MIT, and Iran University of Science and Technology. Akbarzadeh’s work centers on advanced structural design, including 3D graphic statics, machine learning applications, and the development of innovative material systems. He has led interdisciplinary projects aimed at optimizing architectural structures through computational methods, including the design of lightweight, efficient, and sustainable materials. His expertise spans architectural design, structural optimization, and computational fabrication, with a particular emphasis on creating new forms of structures that combine art and engineering. He has also mentored numerous students and young researchers, contributing to the academic growth of the field.

Awards and Honors 

Masoud Akbarzadeh has received numerous accolades for his groundbreaking work in architecture and structural design. In 2023, his paper on “Dragonfly-Inspired Wing Design Enabled by Machine Learning and Maxwell’s Reciprocal Diagrams” was featured as a Cover Highlight in Advanced Science. His 2022 paper on “Strut-Based Cellular to Shellular Funicular Materials” was also highlighted in Advanced Functional Materials. He was awarded the 2022 DigitalFUTURES Best Project Award for his ultra-thin hollow glass shell prototype, Tortuca, which was also longlisted in the Dezeen Awards and won the ARCHITECT R+D Award. Other notable achievements include the prestigious National Science Foundation CAREER Award (2020), the A’Design Silver Award for Saltatur: The Dancer (2020), and the SOM Traveling Fellowship for Architecture in 2011. His recognition across various platforms attests to his leadership and innovative contributions to the field of architecture and structural engineering.

Research Focus

Masoud Akbarzadeh’s research focuses on the intersection of computational design, structural optimization, and material science. His primary interest lies in 3D graphic statics, which involves the geometric and force-based analysis of structural systems, specifically focusing on the use of polyhedral reciprocal diagrams. Akbarzadeh explores the application of machine learning in structural design, enabling smarter and more efficient evaluation processes for complex construction methods. He is particularly interested in form-finding methods for funicular structures and how they can be applied to new materials such as ultra-thin glass shells and cellular solids. His work also delves into the design of architected materials that balance aesthetic considerations with structural performance. Additionally, he investigates the integration of machine learning into form-finding and optimization processes, aiming to create sustainable and innovative solutions in architecture and engineering. His research bridges the gap between computational modeling, material science, and structural design.

Publication Top Notes

  • On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams 🏗️
  • Prototype of an ultra-thin, concrete vaulted floor system 🏛️
  • Machine learning assisted evaluations in structural design and construction 🤖
  • 3D graphical statics using reciprocal polyhedral diagrams 📐
  • Algebraic 3D graphic statics: Reciprocal constructions 🔢
  • Polyframe, efficient computation for 3d graphic statics ⚙️
  • 3D graphic statics: geometric construction of global equilibrium 🌍
  • Strut‐Based Cellular to Shellular Funicular Materials 🌿
  • 3D Graphical Statics 📊
  • On structural behavior of a funicular concrete polyhedral frame designed by 3D graphic statics 🏢
  • Three-dimensional compression form finding through subdivision 📏
  • Compression-only form finding through finite subdivision of the external force polygon ⚒️
  • Graphic statics in a continuum: Strut-and-tie models for reinforced concrete 🧱
  • The design of an ultra-transparent funicular glass structure 🪟
  • Spatial compression-only form finding through subdivision of external force polyhedron 📐
  • Geometry-based structural form-finding to design architected cellular solids 🔲
  • Effect of Subdivision of Force Diagrams on the Local Buckling, Load-Path and Material Use of Founded Forms 💪

Conclusion

Masoud Akbarzadeh stands out as a leading figure in the field of structural design, with a research portfolio that integrates cutting-edge computational methods, innovative material applications, and sustainable design practices. His significant academic achievements, numerous awards, and highly cited publications demonstrate both the quality and relevance of his work. Although there are areas where his research could expand to real-world applications and interdisciplinary fields, his current contributions position him as a deserving candidate for the Best Researcher Award. His work promises to continue shaping the future of architecture and structural engineering, making a lasting impact on the field.

Chao Yang | Structural Engineering | Best Researcher Award

Dr Chao Yang | Structural Engineering | Best Researcher Award

Chao Yang, School of Civil Engineering and Architecture/East China Jiaotong University, China

Dr. Chao Yang is an Associate Professor at the School of Civil Engineering and Architecture, East China Jiaotong University in China. His research focuses on steel-concrete composite structures and industrial solid waste concrete materials, particularly their time-dependent behaviors. Prof. Yang has co-authored 8 journal papers and is skilled in structural and material testing, numerical modeling, and the development of design methods. His work is widely recognized for advancing the understanding of the mechanical properties and durability of construction materials, contributing to sustainable practices in the civil engineering field. Dr. Yang’s contributions extend to educational activities, where he actively mentors students and researchers in the areas of concrete and structural engineering.

Profile

Scopus

Strengths for the Award

  1. Innovative Research Focus
    Dr. Chao Yang has made significant contributions to the field of steel-concrete composite structures and industrial solid waste concrete materials. His research is focused on the time-dependent behaviors of these materials, particularly creep properties, which is critical for the longevity and durability of construction materials and infrastructure. His work on recycled materials (e.g., recycled ceramic aggregates) in concrete also supports sustainable construction practices.
  2. Impressive Publication Record
    Dr. Yang has authored and co-authored 8 peer-reviewed journal papers and several conference papers, with work published in respected journals like Construction and Building Materials and the Journal of Materials Research and Technology. His research has already started to make an impact, reflected in a growing citation index. This suggests that his findings are widely recognized by peers and practitioners in his field.
  3. Expertise in Multiple Research Methods
    His proficiency spans multiple research techniques including material testing, numerical modeling, and the development of design methods. This versatile skill set enables Dr. Yang to approach complex structural problems from both theoretical and practical perspectives, ensuring the real-world applicability of his research.
  4. Interdisciplinary Approach
    Dr. Yang’s work integrates structural engineering with material science, as seen in his modeling of concrete-filled steel tubular (CFST) structures and his development of time-dependent creep models. This interdisciplinary approach has the potential to significantly advance the design and sustainability of civil engineering infrastructure.
  5. Leadership in Mentorship
    As a PhD supervisor, Dr. Yang has guided students like Mengcheng Chen, whose work on concrete creep behavior has contributed to the advancement of the field. His mentorship demonstrates his ability to shape the next generation of engineers and researchers.
  6. Relevance to Global Sustainability Goals
    Dr. Yang’s research on recycled materials in concrete aligns with global sustainability goals, addressing the increasing demand for environmentally-friendly and cost-effective construction solutions. His work on industrial solid waste materials can play a key role in reducing the carbon footprint of construction activities.

Areas for Improvement

  1. Broader Research Collaboration
    Although Dr. Yang has made significant contributions to the field, expanding his research into international collaborations could further elevate the impact of his work. Partnering with global experts in material science and structural engineering could bring new insights and approaches to his research, fostering innovation and accelerating the adoption of his findings in the industry.
  2. Focus on Real-World Applications
    While his research on creep behavior and time-dependent properties is academically strong, there is an opportunity to push this research into more practical applications. For example, testing his models in real-world construction environments or collaborating with construction companies to implement his theories on recycled concrete materials in large-scale projects would further enhance the impact of his research.
  3. Increased Public Engagement
    Dr. Yang could increase his outreach efforts by engaging in public science communication—explaining the importance of his research to broader audiences. This would not only promote awareness of sustainable construction but also help bridge the gap between academic research and practical, policy-driven decisions.
  4. Diversification of Research Funding Sources
    Dr. Yang could look to diversify his sources of research funding, especially by seeking collaboration with industry partners and participating in international funding programs. This could provide additional resources to scale his research projects and enhance the breadth of his studies.

Education

Dr. Chao Yang obtained his Doctorate in Civil Engineering from East China Jiaotong University. He also completed his Master’s and Bachelor’s degrees at the same institution. Throughout his academic journey, Dr. Yang specialized in material science and structural engineering, focusing on the mechanical properties and durability of concrete-filled steel tube structures and recycled concrete materials. His research has led to advancements in understanding the time-dependent behavior of concrete structures under different environmental conditions, contributing valuable insights to the field of civil engineering. His education has laid the foundation for his current work, which blends theoretical knowledge with practical applications in sustainable building materials and construction technologies.

Experience

Dr. Yang has extensive experience in both academic and research environments. Currently, as an Associate Professor at the School of Civil Engineering and Architecture at East China Jiaotong University, he teaches courses on structural engineering, material science, and construction technologies. In addition to his teaching role, he has been involved in numerous research projects focused on steel-concrete composite structures and sustainable building materials. His expertise includes structural and material testing, numerical modeling, and design method development for construction systems that optimize performance and sustainability. Dr. Yang has collaborated on international research projects and has published multiple articles in peer-reviewed journals. His experience in both academic instruction and practical research has made him a respected figure in his field.

Awards and Honors

Dr. Chao Yang’s academic and research contributions have earned him significant recognition within the civil engineering community. He has received multiple research grants for his work on time-dependent behaviors of steel-concrete composite structures and industrial waste concrete materials. His publications in top-tier journals and his innovative research on sustainability and material performance have garnered substantial citations, reflecting the impact of his work. In recognition of his achievements, Dr. Yang has been awarded the “Best Paper” award at several national conferences and has been an invited speaker at various international events. He is also a recipient of research funding from governmental bodies and industry partners, which has supported his cutting-edge research in construction materials and structural engineering.

Research Focus

Dr. Chao Yang’s research centers around the mechanical behavior and durability of steel-concrete composite structures, with a particular emphasis on their time-dependent properties, including creep behavior. His work explores the use of industrial solid waste in concrete materials, such as recycled ceramic powder and aggregates, to improve the performance and sustainability of construction materials. He has developed creep models and conducted extensive numerical simulations to evaluate the reliability and mechanical properties of concrete-filled steel tubular (CFST) structures. Dr. Yang’s research aims to bridge the gap between material science and structural engineering, optimizing the use of recycled materials and improving the structural integrity and sustainability of civil engineering projects.

Publication Top Notes

  1. Research on creep of concrete-filled steel tube based on Generalized Kelvin chain – J. Engineering Mechanics, 2022, 39(02): 200-207 📚
  2. Three-dimensional creep calculation model for reliability analysis of concrete-filled steel tubular (CFST) structure – Construction and Building Materials, 2024, 414(134923) 🏗️
  3. Enhancing mechanical properties of three-dimensional concrete at elevated temperatures through recycled ceramic powder treatment methods – Journal of Materials Research and Technology, 2024, 31: 434-446 🔥
  4. Creep Testing and Analysis of Recycled Ceramic Aggregate Concrete-Filled Circle-Shaped Steel Tube – Available at SSRN 4939628 ♻️
  5. Experimental study on the flexural resistance of existing prestressed hollow-core slab beams – Structures, Elsevier, 2024, 63: 106323 🔬
  6. Research on Gamma model parameter estimation of concrete creep – Journal of The China Railway Society, 2021, 43(5): 204-212 📖
  7. A full-range analysis of anchorage failure for reinforced concrete beams in chloride environment – Engineering Failure Analysis, 2019, 105(-): 566-583 ⚙️
  8. Experimental study on bonding of reinforced concrete beams in chloride environment – Journal of The China Railway Society, 2019, (08): 84-93 🏗️

Conclusion

Dr. Chao Yang is an exceptional researcher with a strong track record in the field of civil engineering, particularly in steel-concrete composite structures and sustainable materials. His work on time-dependent behaviors and the use of industrial waste materials for concrete offers significant contributions to the field of sustainable construction. The combination of his research expertise, teaching experience, and the practical relevance of his work makes him a strong candidate for the Best Researcher Award.

Moving forward, enhancing his international collaborations, expanding the real-world applications of his research, and increasing public engagement would elevate his research to an even greater level. Dr. Yang’s dedication to advancing sustainability in the built environment positions him as a key figure in shaping the future of civil engineering research.

Alzbeta Sapietova | Structural Engineering | Best Researcher Award

Alzbeta Sapietova | Structural Engineering | Best Researcher Award

Professor | University of Žilina| Slovakia

Short Bio ✨

Alzbeta Sapietova is a distinguished professor at the University of Žilina, Slovakia, with over three decades of experience in the field of mechanical engineering. Born on October 12, 1960, she has dedicated her career to advancing education and research in mechanics, particularly in dynamics and system modeling. Her commitment to her students and her contributions to research have made her a respected figure in her field.

Profile👤

Scopus

ORCID

Education 🎓

Alzbeta completed her undergraduate degree in Mechanical Engineering at the University of Transport and Communications in Žilina in 1984. She later pursued her Ph.D. at the University of Žilina, graduating in 2006. Her academic background laid the foundation for her research and teaching career, focusing on advanced mechanical systems and computational mechanics.

Experience 💼

Since 1996, Alzbeta has been a faculty member at the University of Žilina, where she has taught various courses, including Statics, Dynamics, and Modelling of Systems of Bodies. Her pedagogical activities have had a significant impact on her students and the engineering community. Additionally, she worked as an independent designer in the Technology Development Unit at the Development Institute for Rationalization and Production of Bearings from 1984 to 1995, further enhancing her practical engineering experience.

Research Interest 🔬

Alzbeta’s research interests lie primarily in the fields of dynamics, system modeling, and computational mechanics. She has contributed to the development of methodologies for analyzing and synthesizing dynamic systems, as well as optimization techniques for mechanical systems. Her recent work includes investigations into the mechanical properties of materials using advanced methods like infrared thermography.

Awards 🏆

Throughout her career, Alzbeta Sapietova has received recognition for her contributions to mechanical engineering education and research. Her published works, including textbooks and research articles, have been instrumental in advancing knowledge in her field. She continues to inspire the next generation of engineers through her teaching and mentoring efforts, solidifying her legacy as a leading figure in material science and mechanical engineering.

Publications 📚

  • Title: Probabilistic Analysis of Critical Speed Values of a Rotating Machine as a Function of the Change of Dynamic Parameters
    Authors: Šavrnoch, Z., Sapieta, M., Dekýš, V., Molčan, M., Fusek, M.
    Year: 2024
    Citation: Sensors, 2024, 24(13), 4349.
  • Title: Increasing the Carrying Capacity of Anchor Bolts by Design Modification of the Nut
    Authors: Pástor, M., Lengvarský, P., Hagara, M., Sapietová, A., Gašpar, Š.
    Year: 2024
    Citation: EAN 2023 – 61st Conference on Experimental Stress Analysis, Proceedings of Full Papers, 2024, pp. 189–200.
  • Title: Contribution to the Creation of Virtual Models of Rotary Machines
    Authors: Šavrnoch, Z., Sapietová, A., Dekýš, V., Drvárová, B.
    Year: 2024
    Citation: EAN 2023 – 61st Conference on Experimental Stress Analysis, Proceedings of Full Papers, 2024, pp. 223–226.
  • Title: Toward ML-Based Application for Vehicles Operation Cost Management
    Authors: Rojek, I., Mikołajewski, D., Przybyliński, S., Dostatni, E., Sapietová, A.
    Year: 2024
    Citation: Lecture Notes in Mechanical Engineering, 2024, pp. 68–82.
  • Title: Analysis of the Parameters for the Production of Seat Components by Injection Molding Technology
    Authors: Sapietová, A., Jantošovič, M., Dekýš, V., Sapieta, M., Šavrnoch, Z.
    Year: 2023
    Citation: AIP Conference Proceedings, 2023, 2976(1), 030007.
  • Title: Contribution to the Measurement of Pipeline Deformation
    Authors: Dekys, V., Novak, P., Biro, D., Sapietova, A.
    Year: 2023
    Citation: AIP Conference Proceedings, 2023, 2976(1), 060007.
  • Title: Investigation of the Mechanical Properties of Spur Involute Gearing by Infrared Thermography
    Authors: Sapieta, M., Dekýš, V., Kaco, M., Sapietová, A., Drvárová, B.
    Year: 2023
    Citation: Applied Sciences (Switzerland), 2023, 13(10), 5988.
  • Title: Influence of a Directional Dependence on Mechanical Properties of Composites Reinforced with Chopped Carbon Fibre Produced by Additive Manufacturing
    Authors: Majko, J., Handrik, M., Vasko, M., Dorciak, F., Sapietova, A.
    Year: 2023
    Citation: Archives of Metallurgy and Materials, 2023, 68(2), pp. 455–461.
  • Title: Acoustic Emission and Infrared Thermography Study of Low Strain Tensile Behavior of AISI 304L Stainless Steel
    Authors: Sapietova, A., Racek, M., Dekys, V., Saga, M., Sofer, P.
    Year: 2023
    Citation: Archives of Metallurgy and Materials, 2023, 68(2), pp. 463–467.
  • Title: Testing the Effect of Bending Moment on Wheel Bearing Heating
    Authors: Stancekova, D., Mrázik, J., Ťavodová, M., Rudawska, A., Turian, F.
    Year: 2022
    Citation: Manufacturing Technology, 2022, 22(1), pp. 71–79.

Conclusion 🚀

Alzbeta Sapietova is highly suitable for the Best Researcher Award due to her distinguished career in mechanical engineering, strong publication record, and ongoing contributions to both academia and applied research. Her expertise in dynamic systems, teaching excellence, and collaborative projects make her a standout candidate. Expanding her international presence and further enhancing her publication impact would only strengthen her already impressive profile.