Fang Yang – Transportation Engineering – Best Researcher Award

Fang Yang - Transportation Engineering - Best Researcher Award

Kunming University of Science and Technology - China

AUTHOR PROFILE

SCOPUS

EXPERT IN ELECTRIC VEHICLE CHARGING SAFETY

Fang Yang is a leading researcher in the field of electric vehicle technology, with a focus on enhancing the safety and efficiency of electric bike charging systems. His work explores innovative methods for detecting charging anomalies and promoting safe charging practices through advanced data analysis and machine learning techniques.

PROLIFIC AUTHOR IN ENGINEERING AND TRANSPORTATION

Fang has contributed significantly to academic literature with several high-impact publications. Notably, his paper on electric bike charging anomaly detection was published in Engineering Applications of Artificial Intelligence, highlighting his expertise in big data applications for transportation systems.

MAJOR PROJECT CONTRIBUTOR

Fang has played a pivotal role in various major projects, including evaluating traffic impacts and organizing traffic during the construction of Guiyang Rail Transit Line S2. His contributions extend to optimizing safety operations for new energy vehicle charging piles and researching big data public services for Kunming mobile signaling.

ADVANCING MACHINE LEARNING IN TRANSPORTATION

His research also includes leveraging machine learning to enhance the safety of electric bicycle charging systems. His work in this area has been featured in iScience, reflecting his commitment to applying cutting-edge technology to real-world transportation challenges.

RESEARCH IN URBAN RAIL TRANSIT DEMANDS

Fang's research extends to the predictability of passenger demands in urban rail transit. His study, published in Transportation, delves into short-term predictions for passenger origins and destinations, showcasing his expertise in optimizing urban transit systems.

FOCUS ON DATA-DRIVEN FORECASTING

His paper on battery swapping demands for electric bicycles, published in the Journal of Transportation Systems Engineering and Information Technology, underscores his proficiency in data-driven forecasting and its applications in improving transportation infrastructure.

DIVERSE RESEARCH EXPERIENCE

With extensive experience across multiple research projects, Fang Yang's work spans from safety analysis of new energy vehicle infrastructure to public service optimization using big data. His diverse expertise reflects a broad commitment to advancing transportation systems through innovative research.

NOTABLE PUBLICATION

Predictability of Short-Term Passengers’ Origin and Destination Demands in Urban Rail Transit.
Authors: F. Yang, C. Shuai, Q. Qian, M. He, J. Lee
Year: 2023
Journal: Transportation, 50(6), pp. 2375–2401

Online Car-Hailing Origin-Destination Forecast Based on a Temporal Graph Convolutional Network.
Authors: C. Shuai, X. Zhang, Y. Wang, F. Yang, G. Xu
Year: 2023
Journal: IEEE Intelligent Transportation Systems Magazine, 15(4), pp. 121–136

Intelligent Diagnosis of Abnormal Charging for Electric Bicycles Based on Improved Dynamic Time Warping.
Authors: C. Shuai, Y. Sun, X. Zhang, X. Ouyang, Z. Chen
Year: 2023
Journal: IEEE Transactions on Industrial Electronics, 70(7), pp. 7280–7289

Promoting Charging Safety of Electric Bicycles via Machine Learning.
Authors: C. Shuai, F. Yang, W. Wang, Z. Chen, X. Ouyang
Year: 2023
Journal: iScience, 26(1), 105786

Battery Swapping Demands Forecast for Electric Bicycles Based on Data-Driven.
Authors: C.-Y. Shuai, F. Yang, X. Ouyang, G. Xu
Year: 2021
Journal: Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 21(2), pp. 173–179

Shafiqul Alam – Transportation Engineering – Best Researcher Award

Shafiqul Alam - Transportation Engineering - Best Researcher Award

SaskPower - Canada

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS:

Shafiqul Alam embarked on his academic journey with a Bachelor's degree in Aeronautical Engineering from Bangladesh University of Professionals in 2014. He later pursued a Master of Applied Science (MASc) in Industrial Systems Engineering at the University of Regina, Canada, from 2019 to 2021.

PROFESSIONAL ENDEAVORS:

With over 8 years of experience, Shafiqul Alam has demonstrated proficiency in engineering maintenance, project planning, technical records, vibration analysis, troubleshooting, technical documentation, safety improvements, and data analysis. His experience includes roles such as Mechanical Engineer (EIT) at SaskPower, Field Service Tech at Arjo Canada, and Assistant Engineer (Maintenance and Planning) at US-Bangla Airlines Ltd.

CONTRIBUTIONS AND RESEARCH FOCUS:

Shafiqul Alam's professional background encompasses diverse skills, including project management, cost estimation, team leadership, and familiarity with safety practices. He has contributed to projects involving maintenance forecasting, troubleshooting, and ensuring compliance with industry standards.

IMPACT AND INFLUENCE:

Having led a team of 15-18 Mechanics and Technicians for three years, Shafiqul Alam has demonstrated leadership skills and a strong understanding of ISO 9001:2008 Standards & Practices. His work in project management and adherence to safety protocols showcases his commitment to excellence.

LEGACY AND FUTURE CONTRIBUTIONS:

As a registered Engineer-In-Training with APEGS, Shafiqul Alam's future contributions may involve obtaining Professional Engineer (P.Eng) status, continuing research in his field, and making further advancements in engineering and project management.

NOTABLE PUBLICATION