Ming Xie – Structural Engineering – Best Researcher Award

Ming Xie - Structural Engineering - Best Researcher Award

Assistant to the president at Xijing University | China

Ming Xie is a highly accomplished academic and researcher with expertise in civil engineering, specializing in structural analysis and advanced material behavior. With years of dedication to innovative engineering solutions, Ming has contributed significantly to research and education, advancing knowledge in structural performance and damage mechanics. Recognized for producing impactful studies and contributing to the academic community, Ming has developed a reputation for precision and depth in research. Through numerous publications and leadership roles, Ming continues to push the boundaries of civil engineering innovation and inspire emerging scholars in the field.

Professional Profile

ORCID

Education

Ming Xie completed a doctoral degree in civil engineering, demonstrating expertise in structural mechanics and material behavior analysis. The academic journey built a strong foundation in advanced engineering principles and problem-solving strategies. With specialized studies in structural isolation and damage modeling, Ming cultivated a strong research orientation early in their career. This educational background serves as the cornerstone of professional growth, contributing to innovative approaches in engineering research. The academic experience has allowed Ming to seamlessly integrate theoretical knowledge with practical applications, positioning them as a leader in the civil engineering research domain.

Professional Experience

Ming Xie has extensive professional experience, holding a prominent role as a professor and director at a leading academic institution. In this role, Ming has guided academic programs, contributed to curriculum development, and mentored numerous graduate and postgraduate students. With expertise in structural engineering and material science, Ming has established a robust portfolio of impactful research and practical engineering applications. Responsibilities include overseeing research initiatives, leading projects, and fostering collaboration with industry experts. Ming’s leadership and dedication to academic excellence have helped shape innovative teaching strategies and advanced the institution’s engineering research standards.

Research Interest

Ming Xie focuses research on structural mechanics, damage modeling, and material behavior in civil engineering. Areas of expertise include negative Poisson’s ratio structural isolation, ultrasonic rock characterization, and bond-slip constitutive relationships in steel-reinforced concrete. Ming is deeply interested in exploring material properties under varying stress conditions and predicting structural performance. Through experimental studies and analytical modeling, Ming’s research aims to enhance safety and durability in infrastructure. Ming continues to investigate novel engineering solutions that optimize performance and resilience, contributing to the development of sustainable and innovative engineering designs that benefit society.

Award And Honor

Ming Xie has earned recognition for exceptional contributions to civil engineering research and academic leadership. With achievements spanning multiple publications and influential projects, Ming is widely acknowledged for advancing engineering science. Ming’s innovative work has brought attention to structural performance under challenging conditions and materials with unique mechanical properties. Honors reflect a dedication to scholarly excellence and commitment to education and research advancement. These achievements have positioned Ming as a key figure in engineering innovation, inspiring peers and future researchers to embrace creativity, persistence, and technical expertise in solving complex engineering challenges.

Research Skill

Ming Xie demonstrates strong expertise in structural analysis, experimental testing, and advanced simulation techniques. Skilled in developing mathematical models, Ming applies theoretical frameworks to solve practical engineering problems. Proficiency extends to material property characterization, stochastic modeling, and prediction of structural damage evolution. Ming’s research methodology integrates field observations, laboratory experiments, and numerical simulations to deliver robust engineering solutions. A focus on precision and innovation ensures impactful results across multiple research areas. Ming is adept at guiding research teams, analyzing complex data, and producing actionable engineering insights that support infrastructure advancement and academic excellence.

Publications

Ming Xie has authored multiple peer-reviewed research articles in internationally recognized journals, addressing innovative solutions in civil engineering. Key studies include the performance of elliptical negative Poisson’s ratio isolation bearings, ultrasonic property prediction in rock materials, and stochastic modeling of steel-reinforced concrete bond-slip. These publications showcase technical mastery and problem-solving expertise, contributing significantly to advancing engineering research. Ming’s body of work reflects a strong commitment to exploring new material properties and enhancing structural design methodologies. Each paper demonstrates rigorous analysis, offering insights that inspire further exploration and collaboration within the engineering field.

Title: Study on the Performance of Elliptical Negative Poisson’s Ratio Structural Isolation Bearing
Authors: Ming Xie, Xiangdong Wu
Journal: Buildings, 2025

Title: Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes
Authors: Lei Wang, Wen Nie, Ming Xie, Zi Wang, Wei Lu, Dongmei Chen, Weinan Lin, Carlo Rosso
Journal: Shock and Vibration, 2024

Title: Stochastic Damage Constitutive Relationship of Steel‐Reinforced Concrete Bond‐Slip
Authors: Ming Xie, Jiahao Liu, Peng Wang, Zi Wang, Jingjing Zhou, Roberto Nascimbene
Journal: Shock and Vibration, 2021

Conclusion

Ming Xie’s academic journey reflects exceptional dedication to research and teaching in civil engineering. Combining advanced knowledge, leadership, and a visionary approach, Ming continues to make significant contributions through innovative projects and scholarly work. Recognized for precision and originality, Ming plays an influential role in shaping engineering education and promoting research excellence. Publications and leadership roles underscore the impact Ming has made on infrastructure safety and material science. As a researcher and mentor, Ming sets a standard of excellence, advancing both scientific understanding and practical engineering applications for future generations.

Xupei Yao – Structural Engineering – Best Researcher Award

Xupei Yao - Structural Engineering - Best Researcher Award

Zhengzhou University - China

AUTHOR PROFILE

SCOPUS

🧬 SUMMARY 

Xupei Yao stands as a dynamic figure in civil engineering, with particular expertise in advanced cementitious composites, nanomaterials, and sustainable construction. The academic trajectory encompasses a Ph.D. from Monash University, where groundbreaking research set the stage for a prolific career. With international collaborations and multidisciplinary integration, work has centered around solving complex engineering problems through innovative material design and nanotechnology. Publications reflect an evolving exploration into material properties, durability enhancement, and environmental performance, particularly within the context of climate-conscious infrastructure. Contributions not only enhance fundamental knowledge but also offer transformative insights into construction materials capable of performing under harsh environmental stressors. By merging simulation, experimentation, and field-based insights, the research trajectory continues to address challenges in structural durability, energy efficiency, and environmental impact. Recognition as a leading young researcher in China further underscores a growing influence in the global academic and engineering community.

🎓 EARLY ACADEMIC PURSUITS

Academic development began with a Bachelor of Civil Engineering under a prestigious 2+2 program jointly organized by Monash University and Central South University. This foundational training offered a robust understanding of both Western and Eastern engineering perspectives. The undergraduate years were marked by excellence, achieving First Class Honors and initiating a fascination with construction materials and their microstructural behavior. Building on this early interest, a Ph.D. in Civil Engineering at Monash University followed, with research emphasizing advanced composites, graphene integration, and nanoscale interactions in cement systems. A strong focus was placed on interface mechanics, reinforcing mechanisms, and multi-scale modeling, which laid the groundwork for future investigations. Graduate studies were supported by esteemed scholarships including the Monash Graduate Scholarship and International Postgraduate Research Scholarship. These formative years reflect a consistent drive toward technical mastery, research innovation, and academic distinction, preparing the foundation for an internationally recognized research portfolio.

🏗️ PROFESSIONAL ENDEAVORS IN ENGINEERING

The professional journey features key roles across leading institutions. Currently serving as Associate Professor at the School of Water Conservancy and Transportation, Zhengzhou University, responsibilities encompass research leadership, mentoring, and curriculum development. Prior to this, tenure at Monash University included multiple capacities—ranging from Research Officer to key contributor within the ARC Nanocomm Hub. This phase nurtured interdisciplinary collaborations and facilitated engagement with nanotechnology applications in construction. Participation in international conferences and peer-reviewed forums reinforced a reputation for precision, innovation, and analytical rigor. Projects undertaken span from fiber-reinforced composites to advanced thermal regulation materials, showcasing a robust capacity to translate theory into practical applications. Whether through lab-based experiments, numerical simulation, or policy-aligned research, the career consistently integrates academic depth with societal relevance. The professional arc reflects a fusion of innovation, education, and global engagement, establishing a firm position in the field of advanced civil infrastructure materials.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Central research themes include high-performance cementitious composites, nanomaterial enhancement, graphene-based fiber reinforcement, radiative cooling materials, and image-based microstructural analysis. Studies such as those on graphene oxide's interaction with cement mortar and hybrid effects in fiber-reinforced mortars have contributed significantly to understanding material durability and strength. A novel integration of coarse-grained molecular dynamics simulations has enabled deeper analysis of polymers at nanoscale, aiding the development of next-generation materials. Recent explorations into passive radiative cooling using nanophotonic structures signal an expansion toward energy-efficient and climate-responsive building systems. Research has also introduced deep learning tools to interpret cement hydration, exemplifying a multidisciplinary approach that blends materials science, computer vision, and sustainability. These contributions offer both academic significance and practical application, providing durable, intelligent, and green solutions for civil infrastructure. The impact resonates through the built environment, where every innovation contributes to safer, smarter, and more sustainable development.

🏅 ACCOLADES AND RECOGNITION

Recognition spans across national and international domains. In China, status as a recipient of the National Overseas Young Talents Award and the Outstanding Young Talents of Zhongyuan has reinforced standing as a leading figure in materials engineering. Prestigious fellowships such as the Monash Graduate Scholarship and the Monash International Postgraduate Research Scholarship supported early scholarly achievements and recognized the high potential for impactful research. During the doctoral phase, the Graduate Research Completion Award further validated academic excellence and research timeliness. Invitations to present at world-class forums such as the World Engineers Convention and the Australian Industrial Hemp Conference showcase peer recognition. Authorship in high-impact journals like Construction and Building Materials, Materials & Design, and Journal of Applied Polymer Science testifies to the rigor and innovation of contributions. These accolades affirm not only scientific merit but also the capacity to influence engineering practice and inspire future directions in material innovation.

🌍 IMPACT AND INFLUENCE IN THE FIELD

The influence of this work extends from scholarly circles to practical engineering domains. Research findings have contributed to redefining the performance expectations of cement-based materials, especially through the integration of graphene, nanofillers, and advanced polymers. Insights into interfacial behavior and microstructure evolution inform the design of more durable and adaptable infrastructure materials. Tools such as deep learning for microstructure analysis and the development of radiative cooling surfaces contribute to energy sustainability in urban environments. The cross-disciplinary nature of the research—bridging physics, chemistry, materials science, and structural engineering—has spurred innovations not only in academia but also in real-world construction technology. The vision integrates societal challenges such as climate change, urban resilience, and material scarcity with scientific discovery. Through mentorship, collaboration, and publication, this impact resonates across continents, cementing a legacy of meaningful contributions to engineering science and applied material innovation.

🧭 LEGACY AND FUTURE CONTRIBUTIONS

Future directions aim to deepen the integration of artificial intelligence, sustainable design, and material innovation in civil infrastructure. A continued focus on nanotechnology will advance the development of smart materials capable of self-sensing, environmental adaptability, and long-term durability. The ambition includes scaling laboratory findings into industry-ready solutions that align with carbon-neutral goals and low-energy construction practices. By collaborating across universities, government bodies, and private sectors, forthcoming work will drive translational research that reshapes construction from the molecular scale up. Educational leadership at Zhengzhou University ensures a growing influence on the next generation of engineers and scientists, embedding a culture of sustainability and scientific rigor. As global challenges intensify—urbanization, climate stress, and material limitations—the research path set forth offers a blueprint for innovation. The evolving legacy remains one of transformation, dedication, and vision, contributing decisively to both the knowledge economy and the resilience of future infrastructures.

NOTABLE PUBLICATIONS

Title: Experimental study on the shearing mechanical behavior of contact surface between polydimethylsiloxane modified polyaspartate polyurea and concrete
Journal: Construction and Building Materials (2025)

Title: A Deep Learning-Based Study of the Role of Graphene Oxide Nanosheets on the Microstructure of Cement Paste
Journal: ACS Applied Nano Materials (2025)

Title: Experimental Study on the Strengthening Effect of Polyaspartate Polyurea Lining on Concrete Pipes
Journal: Journal of Applied Polymer Science (2025)

Ting-Yu Fan – Structural Engineering – Best Researcher Award

Ting-Yu Fan | Structural Engineering | Best Researcher Award

National Atomic Research Institute - Taiwan

AUTHOR PROFILE

ORCID

SCOPUS

SUMMARY

Ting-Yu Fan is a dedicated engineer and researcher at the National Atomic Research Institute, Taiwan. His expertise spans seismic analysis, soil-structure interaction, and thermal-hydraulic coupling, with a strong focus on nuclear and renewable energy infrastructures. Having contributed to international collaborative projects like DECOVALEX, he brings global perspective and depth to structural safety assessments. Through multidisciplinary research, industry consultancy, and cutting-edge modeling work, Fan continues to make notable advances in the safety and performance of critical energy systems under extreme environmental conditions.

EDUCATION

Ting-Yu Fan completed his Master of Engineering at National Cheng Kung University, Taiwan. His academic foundation centers on structural integrity assessment, seismic performance, and coupled thermal-hydraulic analysis. These areas laid the groundwork for his contributions to national and international research, especially in structural modeling and nuclear energy safety. His education provided the theoretical and technical base to tackle complex challenges in energy systems, particularly those involving fault mechanics, soil-structure interaction, and the behavior of engineered systems under extreme stress conditions.

PROFESSIONAL EXPERIENCE

Currently serving at the National Atomic Research Institute, Fan leads and participates in several government and industry-funded projects on nuclear safety and structural resilience. His prior engagements include critical work on offshore wind turbine support structures and safety cases for spent nuclear fuel disposal. He has contributed to structural evaluations against natural disasters such as typhoons and earthquakes. His professional journey reflects a continuous effort to bridge theoretical modeling with real-world engineering solutions in high-risk and sensitive infrastructures.

RESEARCH INTEREST

Ting-Yu Fan’s research interests span seismic performance evaluation of nuclear infrastructure, structural integrity under multi-hazard conditions, safety case development for spent nuclear fuel disposal, and advanced numerical modeling. He is particularly engaged in soil-structure interaction studies and fault reactivation modeling. His work also includes pioneering research in seismic isolation technologies for small modular reactors and extreme load responses of offshore wind support systems. These themes converge in his quest to enhance the safety, reliability, and sustainability of modern energy infrastructures.

AWARD AND HONOR

Ting-Yu Fan’s selection and participation in the DECOVALEX international research initiative reflect peer recognition of his expertise. His leadership roles in high-stakes government-funded projects further demonstrate his standing in Taiwan’s nuclear and structural engineering communities. His publications and project outcomes have contributed significantly to both academic knowledge and practical advancements in infrastructure safety, earning him a reputation as a trusted expert in the seismic and structural behavior of critical energy systems.

RESEARCH SKILL

Ting-Yu Fan brings advanced skills in seismic analysis, THM modeling, structural integrity evaluation, and numerical simulations. His toolkit includes fault activation modeling, soil-structure interaction analysis, and safety case development for complex nuclear systems. He is proficient in handling multidisciplinary data for integrated assessments of structural and geotechnical systems under environmental stressors. His ability to interpret seismic and thermal data and simulate real-world behaviors under extreme conditions stands as a cornerstone of his research success.

PUBLICATIONS

Title: Modeling the Influence of Soil-Structure-Interaction on Seismic Response of Jacket Substructure for the DTU 10MW Offshore Wind Turbine
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2022)

Title: Strength Analysis for a Jacket-Type Substructure of an Offshore Wind Turbine under Extreme Environment Conditions
Authors: Fan, T.-Y.; Chen, S.-H.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Time-Domain Fatigue Analysis of Multi-Planar Tubular Joints for a Jacket-Type Substructure of Offshore Wind Turbines
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Fatigue Analysis for Jacket-Type Substructure of 5MW Offshore Wind Turbine in Time Domain and Evaluation of Fatigue Damage
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Journal of the Chinese Institute of Civil and Hydraulic Engineering (2018)

Title: Numerical Fatigue Analysis for Jacket-Type Substructure of Offshore Wind Turbines under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2018)

Title: Fatigue Analysis for Jacket-Type Support Structure of Offshore Wind Turbine under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2017)

Title: Reissner's Mixed Variational Theorem-Based Finite Cylindrical Layer Methods for the Three-Dimensional Free Vibration Analysis of Sandwich Circular Hollow Cylinders with an Embedded Functionally Graded Material Layer
Authors: Wu, C.-P.; Fan, T.-Y.; Li, H.-Y.
Journal: Journal of Vibration and Control (2014)

CONCLUSION

Ting-Yu Fan exemplifies a modern researcher committed to public safety and energy resilience. His interdisciplinary approach blends engineering rigor with policy-oriented research outcomes. Through his contributions to nuclear safety, renewable energy systems, and geotechnical modeling, he enhances the scientific foundations for infrastructure design in seismically active and environmentally challenging regions. His work continues to impact engineering practices, regulatory standards, and academic collaboration, positioning him as a key contributor to the evolving field of energy systems engineering.

Milan Sapieta | Structural Engineering | Best Researcher Award

 Mr. Milan Sapieta| Structural Engineering | Best Researcher Award

researcher at UNIZA in Slovakia

Milan Sapieta is a dedicated professional in [specific field, e.g., engineering, technology], recognized for his contributions to [specific areas, e.g., software development, system engineering]. With a strong background in both academic research and practical application, he is committed to advancing technology through innovative solutions. Milan’s work has had a notable impact in [mention relevant industry or sector, e.g., telecommunications, renewable energy].

Professional Profiles:

Strengths for the Award

  • Milan Sapieta stands out as a strong candidate for the Research for Community Impact Award and the Best Researcher Award due to his extensive research contributions and practical applications in engineering and materials science. His work in flange fatigue life calculation, stress analysis of battery containers, and mechanical properties of spur involute gearing demonstrates a commitment to addressing real-world challenges, particularly in areas that impact public safety and infrastructure.His recent publications in high-impact journals, such as Applied Sciences and Materials, further solidify his reputation as a leading researcher. Notably, the article on the design and implementation of a low-cost torque sensor for manipulators highlights his innovative approach to enhancing technological solutions that can benefit various industries, including robotics and automation. The ability to publish in reputable journals indexed in SCOPUS and the Web of Science indicates the significance and quality of his research.Milan’s contributions to studies on load measurement of cervical vertebrae during car travel exemplify his dedication to public health and safety, directly impacting vehicle safety standards and ergonomics. His ability to collaborate with co-authors on multidisciplinary research also illustrates his teamwork and communication skills, essential for impactful research.

Areas for Improvement

  • Despite his impressive achievements, Milan could further enhance his candidacy by increasing his outreach efforts and community engagement related to his research. Developing initiatives to share findings with the public, industry stakeholders, or educational institutions could amplify the societal impact of his work. This could include workshops, seminars, or educational programs aimed at demonstrating the real-world applications of his research in engineering and materials science.Additionally, pursuing interdisciplinary collaborations with professionals from different fields could provide fresh perspectives and enhance the relevance of his research. Engaging with policymakers or industry leaders to translate his findings into practical applications could further elevate his profile for the Research for Community Impact Award

Education:

  • Milan Sapieta holds a Bachelor’s degree in [specific field, e.g., Electrical Engineering, Computer Science, or a related discipline] from [University Name], where he developed foundational skills in [mention core subjects, e.g., circuit design, software development]. He further advanced his education with a Master’s degree in [specific field] from [University Name], focusing on [specific areas of specialization or research, e.g., digital systems, machine learning]. Milan’s academic achievements provided him with a solid grounding in both theoretical knowledge and practical applications in his field.

Professionals Experience:

  • Milan has accumulated over [number] years of experience in [specific field or industry, e.g., technology, engineering, or research]. He currently serves as [current position, e.g., Software Engineer, Research Scientist] at [Company/Institution Name], where he is responsible for [mention specific responsibilities, e.g., developing innovative solutions, leading research projects, or designing new systems]. Previously, he held roles at [mention previous companies or institutions], where he contributed to significant projects involving [mention relevant technologies or processes, e.g., software development, system optimization].

Skills:

  • Milan possesses a diverse skill set, including expertise in [mention specific skills, e.g., programming languages, software tools, system design]. He is proficient in using [specific software or tools, e.g., MATLAB, Python, AutoCAD], and has strong analytical and problem-solving abilities. His collaborative skills and experience in project management enhance his ability to work effectively in multidisciplinary teams.

Research Focus:

  • Milan’s research interests are primarily focused on [mention key areas, e.g., software engineering, system optimization, machine learning]. He aims to address challenges in [specific challenges, e.g., improving system efficiency, enhancing user experience], and his work seeks to develop innovative solutions that contribute to the advancement of [mention relevant industry or technology, e.g., smart systems, renewable energy]. Through his research, Milan aspires to make meaningful contributions to the ongoing evolution of [specific field or sector].

Publications :

  • “Probabilistic Analysis of Orbital Characteristics of Rotary Systems with Centrally and Off-Center Mounted Unbalanced Disks”
    • Journal: Applied Sciences
    • Publication Date: September 30, 2024
  • “Probabilistic Analysis of Critical Speed Values of a Rotating Machine as a Function of the Change of Dynamic Parameters”
    • Journal: Sensors
    • Publication Date: July 4, 2024
  • “The Impact of Internal Structure Changes on the Damping Properties of 3D-Printed Composite Material”
    • Journal: Applied Sciences
    • Publication Date: June 29, 2024
  • “Design and Implementation of a Low-Cost Torque Sensor for Manipulators”
    • Journal: Applied Sciences
    • Publication Date: August 18, 2023
  • “Investigation of the Mechanical Properties of Spur Involute Gearing by Infrared Thermography”
    • Journal: Applied Sciences
    • Publication Date: May 12, 2023
  • “The Impact of Excitation Periods on the Outcome of Lock-In Thermography”
    • Journal: Materials
    • Publication Date: March 30, 2023

Conclusion:

  • Milan Sapieta is highly suitable for both the Research for Community Impact Award and the Best Researcher Award due to his significant contributions to engineering research and its practical applications. His work not only advances the field of materials science but also directly impacts safety and efficiency in real-world scenarios. By expanding his community outreach and interdisciplinary collaborations, he can further strengthen his influence and enhance the broader impact of his research, making him a formidable candidate for these awards.