Zhou Jingya | Environmental Engineering | Best Researcher Award

Zhou Jingya | Environmental Engineering | Best Researcher Award

Zhou Jingya, a lecturer at the College of Geography and Ocean Science, Yanbian University, has developed a strong academic foundation in marine engineering, corrosion science, and environmental protection. Her research focuses on the interaction between marine microbial activities and material degradation, emphasizing sustainable and resilient solutions for oceanic infrastructure. Zhou has played a significant role in several prestigious national projects, including studies funded by the National Natural Science Foundation of China on targeted antibacterial nanomaterials, the engineering behavior of calcareous sand in the South China Sea, and the combined effects of sea-ice cycles and microbial corrosion on marine structures. As the principal investigator of multiple projects, including those supported by the Jilin Provincial Department of Education and Yanbian University, Zhou explores green concrete and microbial self-healing systems in the context of carbon neutrality and cross-border water pollution mitigation. Her scientific contributions are marked by first and corresponding author roles in several high-impact journals such as International Biodeterioration & Biodegradation, Ocean Engineering, Materials, and Microorganisms. Notable publications include research on microbial-induced concrete corrosion and dynamic sulfur cycle modeling in urban sewage systems under extreme environmental conditions. She has also authored a technical book titled Microbial Evaluation and Management Techniques for High-Temperature and High-Salt Urban Sewage Pipelines (2025), reflecting her applied expertise in environmental microbiology. Zhou’s innovative approach combines advanced imaging, biofilm modeling, and multivariate analyses to uncover new mechanisms of material-environment interactions. Her teaching excellence is evidenced by award-winning work on blended learning for environmental bioremediation engineering. With a growing academic influence, reflected in multiple SCI-indexed papers and leadership in interdisciplinary projects, Zhou continues to advance sustainable engineering solutions at the intersection of microbiology, materials science, and marine environmental systems.

Roger Falconer – Water Resources Engineering – Best Researcher Award

Roger Falconer - Water Resources Engineering - Best Researcher Award

Emeritus Professor of Water and Environmental Engineering

Roger A. Falconer is an Emeritus Professor of Water & Environmental Engineering with over 45 years of expertise in water science, hydro-environmental research, and environmental management. He has held prominent positions at Cardiff University, Hohai University, and multiple global institutions. His work involves developing computational models, advising governments, and leading large-scale tidal energy projects. Roger has published over 500 papers, supervised more than 70 PhD students, and delivered numerous keynote lectures worldwide. His contributions have significantly advanced water quality management, flood resilience, and renewable energy solutions globally.

Professional Profile

Google Scholar | Scopus

Education

Roger A. Falconer completed his Ph.D. from Imperial College, University of London, specializing in environmental hydraulics. He pursued his M.S. at the University of Washington, USA, and earned his B.Sc. in Engineering from King’s College, University of London. He further obtained advanced engineering qualifications, including a DSc(Eng) from the University of London and a DEng from the University of Birmingham. His extensive academic foundation in civil, hydraulic, and environmental engineering has enabled him to become one of the leading experts in hydro-environmental research and its applications to sustainable water management worldwide.

Professional Experience

Roger A. Falconer has served as Emeritus Professor at Cardiff University and Chair Professor at Hohai University. He has led globally recognized research centers, including the Hydro-environmental Research Centre, and directed multi-million-pound projects on tidal energy, river basin management, and water quality enhancement. He has acted as a consultant on over 100 hydro-environmental impact assessments and served on numerous government panels and scientific advisory boards. Falconer’s professional career includes significant leadership in academia, pioneering computational water modeling, and establishing collaborations with industries and policymakers to advance sustainable environmental solutions.

Research Interest

Roger A. Falconer’s research interests focus on hydro-environmental modeling, tidal energy systems, flood risk management, water quality, and global water security. His work emphasizes applying computational techniques to address complex challenges in river, estuarine, and coastal basin dynamics. Falconer has developed widely used models such as DIVAST and TRIVAST, supporting more than 60 academic institutions and consulting firms. He actively promotes international collaboration in water engineering, advancing innovative approaches to climate resilience, renewable energy, and environmental sustainability while providing expertise to governments and organizations worldwide.

Award And Honor

Roger A. Falconer has received numerous prestigious awards, including the RAEng Silver Medal, IAHR Arthur Thomas Ippen Award, and the Chinese Government Friendship Award, which is the highest recognition for foreign experts. He has also been elected a Fellow of the Royal Academy of Engineering, the European Academy of Sciences, and the Learned Society of Wales. Falconer’s leadership within the International Association for Hydro-Environment Engineering and Research earned him an Honorary Fellowship. His outstanding contributions have been widely acknowledged across academic, governmental, and industrial sectors globally.

Research Skill

Roger A. Falconer demonstrates exceptional research skills in computational modeling, environmental hydraulics, tidal energy design, and integrated water resource management. His expertise lies in developing innovative hydro-environmental tools for predicting water flow, quality, and sediment transport processes. Falconer has successfully supervised over 70 Ph.D. candidates and collaborated on more than 120 international conferences. His ability to translate research into practical solutions has supported industries, governments, and communities in managing flood risks, improving water systems, and adopting sustainable renewable energy technologies globally.

Publications

Roger A. Falconer has authored and co-authored over 500 journal and conference papers, along with book chapters and technical reports on water engineering and environmental management. His publications cover diverse areas, including computational hydrodynamics, tidal lagoon systems, flood risk reduction, and hydro-environmental modeling. His work is highly cited, with significant recognition on Google Scholar, Scopus, and ResearchGate. Falconer’s impactful research outputs have influenced policy decisions, advanced scientific understanding, and provided practical solutions to pressing environmental and engineering challenges worldwide.

Title: Benchmarking 2D hydraulic models for urban flooding
Authors: NM Hunter, PD Bates, S Neelz, G Pender, I Villanueva, NG Wright, ...
Journal: Proceedings of the Institution of Civil Engineers - Water Management 161 (1), 2008

Title: Longitudinal dispersion coefficients in natural channels
Authors: SM Kashefipour, RA Falconer
Journal: Water Research 36 (6), 1596-1608, 2002

Title: Tidal range energy resource and optimization–Past perspectives and future challenges
Authors: SP Neill, A Angeloudis, PE Robins, I Walkington, SL Ward, I Masters, ...
Journal: Renewable Energy 127 (November), 763-778, 2018

Title: Modelling dam-break flows over mobile beds using a 2D coupled approach
Authors: J Xia, B Lin, RA Falconer, G Wang
Journal: Advances in Water Resources 33 (2), 171-183, 2010

Title: New criterion for the stability of a human body in floodwaters
Authors: J Xia, RA Falconer, Y Wang, X Xiao
Journal: Journal of Hydraulic Research 52 (1), 93-104, 2014

Title: A review of the potential water quality impacts of tidal renewable energy systems
Authors: M Kadiri, R Ahmadian, B Bockelmann-Evans, W Rauen, R Falconer
Journal: Renewable and Sustainable Energy Reviews 16 (1), 329-341, 2012

Conclusion

Roger A. Falconer is an internationally renowned expert in water and environmental engineering, with decades of experience driving innovation in hydro-environmental research, policy advisory, and renewable energy solutions. His pioneering contributions in computational modeling, tidal energy systems, and global water security have shaped sustainable development strategies worldwide. Through extensive publications, leadership roles, and collaboration with governments and industries, Falconer continues to influence scientific advancements and practical applications. His outstanding achievements demonstrate his dedication to solving critical environmental challenges and promoting sustainable resource management.

Marie Giroudon – Civil and environmental engineering – Best Researcher Award

Marie Giroudon - Civil and environmental engineering - Best Researcher Award

INSA Toulouse - France

AUTHOR PROFILE

GOOGLE SCHOLAR 

SCOPUS

🔬 SUMMARY

Marie Giroudon is a pioneering researcher in civil engineering, specializing in the sustainability and durability of cementitious materials under aggressive conditions. Grounded in both academic excellence and hands-on experimentation, the work contributes meaningfully to environmental engineering and sustainable construction. With a strong interdisciplinary approach, Marie bridges civil engineering with microbiological and biochemical phenomena, particularly in the context of biogas and anaerobic digestion infrastructures. The research explores how binders, additives, and natural aggregates behave in corrosive environments, aiming to develop low-carbon, bio-integrated materials that withstand biodeterioration. The innovative contributions have gained recognition across both scientific and industrial communities, notably in Europe. Presently working as Maître de Conférences at INSA Toulouse, the career reflects a continuous trajectory of academic distinction, impactful collaborations, and scientific leadership. With a solid publication record and active roles in international working groups, Marie continues to shape the future of sustainable and durable construction materials research globally.

📘 EARLY ACADEMIC PURSUITS

Marie Giroudon’s academic path reflects a steady ascent through top-tier institutions and rigorous programs in science and engineering. The journey began with a Bachelor's degree in Physics at Université Toulouse III Paul Sabatier, attained with distinction. The foundation in physics cultivated a strong analytical and technical perspective, later channeled into civil and geotechnical engineering. The academic development continued through a Master’s and Engineering diploma from UPSSITECH, marked by honors and international exposure through a semester at Polytechnique Montréal. The formal academic training culminated in a PhD in Civil Engineering from INSA Toulouse, successfully defended in January 2021. The thesis explored interactions between biowaste in anaerobic digestion and cement-based materials, laying the groundwork for future innovations in eco-resilient infrastructure. Throughout this formative period, Marie consistently demonstrated high aptitude, curiosity, and commitment to research excellence, supported by prestigious grants and supervision under renowned French experts in materials durability and sustainable construction.

🏗️ PROFESSIONAL ENDEAVORS

Marie Giroudon's professional experience showcases a seamless blend of research, teaching, and interdisciplinary project leadership. Currently serving as Maître de Conférences at INSA Toulouse within the Laboratoire Matériaux et Durabilité des Constructions (LMDC), the role integrates research on cementitious materials with pedagogy across subjects such as BIM, geotechnics, and prestressed concrete. Previously, Marie contributed to cutting-edge postdoctoral projects like WWT Concrete, targeting sustainable solutions for wastewater infrastructure. These roles followed a rich doctoral journey supported by ANR BIBENdOM, focusing on how cement-based materials react in biodeteriorative, anaerobic conditions. Each professional role has been guided by a strong commitment to innovation and sustainability. With active involvement in mentoring research students and coordinating academic collaborations across institutions like EPFL and Université Gustave Eiffel, the career reflects a mature scientific vision combined with practical leadership in environmental and construction material research. These roles reinforce Marie's expertise in applying fundamental science to real-world engineering challenges.

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

The research of Marie Giroudon addresses critical challenges in environmental engineering by focusing on the durability of cementitious materials in chemically aggressive settings, particularly anaerobic digestion systems. By investigating alternative binders such as metakaolin geopolymers, blast-furnace slag cement, and calcium aluminate cement, the work contributes to lowering the environmental footprint of construction. Key innovations include identifying the biodeterioration kinetics and interaction mechanisms between organic matter and cement matrices. Marie's investigations into materials behavior under exposure to ammonium, organic acids, and fermentation byproducts are crucial for designing long-lasting bio-infrastructure. Collaborations with biotechnologists and environmental chemists have enriched these studies with multidisciplinary insights. Through over 15 peer-reviewed articles and numerous conference presentations, Marie has established a strong scientific presence in sustainable materials research. The work influences guidelines for agricultural and industrial infrastructure, particularly biogas plants, and contributes to European discussions on green civil engineering, forming the scientific basis for future innovations in eco-construction.

🏅 ACCOLADES AND RECOGNITION

Marie Giroudon has earned several recognitions that underscore both scientific excellence and community engagement. A prominent achievement includes winning the 3rd prize at the “Forum Jeunes Chercheurs” in Marne la Vallée for research on biodeterioration of cement materials—an acknowledgment of originality and societal relevance. As a dedicated member of international expert committees like RILEM TC 253-MCI and the French Civil Engineering Association’s “Bétons et Microorganismes” group, Marie contributes actively to shaping technical documentation and standards on microbial impacts on concrete. Participation in these expert networks reflects not only scientific credibility but also an enduring commitment to collaborative advancement. Furthermore, the invitation to contribute to state-of-the-art reports published by Springer, and repeated representation at top-tier conferences such as the International Congress on the Chemistry of Cement, highlight widespread recognition. These honors affirm Marie’s status as a rising leader in the domain of eco-resilient construction materials and sustainable civil infrastructure research.

🌍 IMPACT AND INFLUENCE

Marie Giroudon's research exerts tangible influence on both academic and applied sectors, particularly in the design and maintenance of biogas infrastructure and wastewater facilities. The interdisciplinary work directly informs environmental policy and engineering practices by providing evidence-based insights into material degradation in microbial and chemical environments. Collaborations with major public utilities like SIAAP and universities such as EPFL have fostered research-to-practice translation. The development of low-carbon, bio-integrated binders presents a promising direction in the global shift toward sustainable construction, aligning with EU climate goals. The work contributes significantly to reducing lifecycle emissions from concrete structures by substituting conventional Portland cement with geopolymer and aluminate alternatives. Moreover, Marie’s mentorship of graduate students ensures that this impact extends through a new generation of eco-conscious engineers. Through scholarly publications, cross-disciplinary research projects, and leadership in technical networks, the contributions continue to shape research trajectories, industrial protocols, and sustainability standards across Europe and beyond.

🧱 LEGACY AND FUTURE CONTRIBUTIONS

Marie Giroudon’s legacy lies in pioneering eco-durability within civil engineering and creating a research foundation that combines chemical resilience, microbial science, and materials engineering. The emerging expertise in micromechanical analysis and nanoindentation of cementitious composites paves the way for future breakthroughs in infrastructure diagnostics. Current recruitment for PhD and postdoctoral positions under Marie’s guidance signals a growing research lab ecosystem focused on innovative materials in leaching and bio-reactive environments. With active roles in scientific communities, the next decade is poised to see deeper exploration into LC3-type low-carbon materials, resistance modeling under multiaxial stress conditions, and long-term simulations of degradation pathways. Furthermore, the integration of sustainability into structural engineering curricula ensures lasting academic influence. With a track record of practical, publication-driven, and collaborative research, Marie’s future contributions will likely redefine durability standards for green buildings and bio-infrastructure, thereby reinforcing global efforts toward resilient, sustainable urban and rural development through advanced material science.

NOTABLE PUBLICATIONS

Title: Comparison of barley and lavender straws as bioaggregates in earth bricks
Authors: M. Giroudon, A. Laborel-Préneron, J.E. Aubert, C. Magniont
Journal: Construction and Building Materials, Vol. 202, pp. 254–265 (2019)

Title: Blast-furnace slag cement and metakaolin based geopolymer as construction materials for liquid anaerobic digestion structures: Interactions and biodeterioration mechanisms
Authors: M. Giroudon, M.P. Lavigne, C. Patapy, A. Bertron
Journal: Science of The Total Environment, Vol. 750, Article 141518 (2021)

Title: Cementitious materials in biogas systems: Biodeterioration mechanisms and kinetics in CEM I and CAC based materials
Authors: C. Voegel, M. Giroudon, A. Bertron, C. Patapy, P.L. Matthieu, T. Verdier, ...
Journal: Cement and Concrete Research, Vol. 124, Article 105815 (2019)

Title: Experimental assessment of bio-based earth bricks durability
Authors: A. Laborel-Préneron, M. Giroudon, J.E. Aubert, C. Magniont, P. Faria
Journal: IOP Conference Series: Materials Science and Engineering, Vol. 660 (1), Article 012069 (2019)

Title: Potential of low carbon materials facing biodeterioration in concrete biogas structures
Authors: M. Giroudon, C. Patapy, M. Peyre Lavigne, M. Andriamiandroso, R. Cartier, ...
Journal: Materials and Structures, Vol. 56 (4), Article 80 (2023)

Title: Insights into the local interaction mechanisms between fermenting broken maize and various binder materials for anaerobic digester structures
Authors: M. Giroudon, C. Perez, M.P. Lavigne, B. Erable, C. Lors, C. Patapy, A. Bertron
Journal: Journal of Environmental Management, Vol. 300, Article 113735 (2021)

Jinsheng Wang – Civil Engineering – Best Researcher Award

Professor Jinsheng Wang - Civil Engineering - Best Researcher Award

Beijing Normal University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

🌊 SUMMARY

Professor Jinsheng Wang stands as a pioneering figure in hydrogeology, environmental science, and groundwater pollution control in China. He serves as Professor, Doctoral Supervisor, and Assistant Dean at the College of Water Sciences, Beijing Normal University. As the Head of two national research centers and an expert member of the Ministry of Environmental Protection, his career is marked by multidisciplinary excellence. His leadership in research, consultancy, and higher education has contributed significantly to shaping China’s groundwater management policies. With over two decades of dedicated scholarship and more than 30 landmark publications, Professor Wang's impact extends across academia, government policy, and environmental engineering practices.

🎓 EARLY ACADEMIC PURSUITS

Professor Wang began his academic journey with a Master’s degree in Hydrogeology at Jilin University (1989–1991), later completing his Doctorate in the same field at the same university (1995–1998). His foundational years were shaped by a deep interest in groundwater dynamics, which evolved into a lifelong research commitment. The rigorous training at Jilin equipped him with advanced field knowledge in hydrogeological systems, groundwater modeling, and environmental assessments. His scholarly formation during this period laid the groundwork for his later expertise in numerical simulations, aquifer dynamics, and pollution remediation. He emerged from this phase with a strong academic identity, blending geoscience with environmental applications.

🏢 PROFESSIONAL ENDEAVORS

Currently, Professor Wang holds multiple leadership roles at Beijing Normal University, including Assistant Dean of the College of Water Sciences and Head of two key research centers: the Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education) and the Groundwater Science and Engineering Research Center. He has served as Principal Investigator for national and international research projects sponsored by the Ministry of Science and Technology, Natural Science Foundation of China, and other governmental agencies. His consultancy contributions span emergency environmental response, water conservation planning, and transboundary water studies. He is also a part-time professor at Jilin University, nurturing the next generation of hydrogeologists.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Professor Wang’s primary research focus revolves around groundwater renewability, pollution dynamics, and water resource modeling. His work integrates hydrochemical analysis, isotopic tracing, and numerical simulations to investigate groundwater systems in critical areas like the Beijing Plain and Yellow River Basin. He has contributed to the development of evaluation indicators for groundwater renewability, environmental impact modeling, and groundwater vulnerability assessment. His research supports sustainable water policy, enhances disaster management systems, and informs national groundwater legislation. Notably, his findings on aquifer recharge, pollutant migration, and water-rock interactions have advanced both academic literature and practical groundwater management strategies in China.

🏅 ACCOLADES AND RECOGNITION

Recognized nationally and internationally, Professor Wang has been entrusted with prestigious positions and major projects, reflecting his deep trust in scientific integrity and environmental stewardship. He was selected as a core member of the first Expert Group on Emergency Management under China’s Ministry of Environmental Protection. His scholarly outputs have been published in top-tier journals and government white papers, establishing him as a thought leader. His academic books, such as those co-authored on the Wenchuan Earthquake and groundwater in the Yellow River Basin, have become reference texts. His engineering insights are not only valued in academia but have become tools for policymakers and field engineers alike.

🌍 IMPACT AND INFLUENCE

The influence of Professor Wang extends beyond academic citations into real-world environmental and water policy reforms. His research has directly shaped groundwater protection action plans across China and improved early warning systems for environmental emergencies. He has enhanced technical understanding among stakeholders at the local and national levels, facilitating sustainable water use frameworks. Internationally, his collaborations have led to joint conferences, workshops, and peer-reviewed publications that bridge Chinese hydrogeology with global environmental concerns. Through mentorship, he has cultivated young scholars who now carry forward his mission in groundwater sustainability and environmental resilience.

🧬 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Professor Wang is set to lead new frontiers in climate-resilient water management, groundwater recharge modeling, and integrated environmental systems. His vision includes refining vulnerability assessments using AI, promoting international knowledge exchange, and enhancing community-based water governance. His legacy is rooted in a deep understanding of natural systems and a commitment to advancing science for societal benefit. As an academic architect of China’s groundwater policies and a global contributor to environmental geosciences, Professor Wang’s future endeavors promise to leave a profound mark on the planet’s water future.

PUBLICATION

A level set method for structural topology optimization
Authors: MY Wang, X Wang, D Guo
Journal: Computer Methods in Applied Mechanics and Engineering

Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors
Authors: IK Mellinghoff, MY Wang, I Vivanco, DA Haas-Kogan, S Zhu, EQ Dia, ...
Journal: New England Journal of Medicine

Contamination features and health risk of soil heavy metals in China
Authors: H Chen, Y Teng, S Lu, Y Wang, J Wang
Journal: Science of the Total Environment

State of the climate in 2015
Authors: J Blunden, DS Arndt
Journal: Bulletin of the American Meteorological Society

Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery
Authors: CR Parikh, SG Coca, H Thiessen-Philbrook, MG Shlipak, JL Koyner, ...
Journal: Journal of the American Society of Nephrology

High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on …
Authors: X Fang, W Zhang, Q Meng, J Gao, X Wang, J King, C Song, S Dai, Y Miao
Journal: Earth and Planetary Science Letters

A Multicentre Study of Shigella Diarrhoea in Six Asian Countries: Disease Burden, Clinical Manifestations, and Microbiology
Authors: L Von Seidlein, DR Kim, M Ali, H Lee, XY Wang, VD Thiem, DG Canh, ...
Journal: PLoS Medicine

Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites
Authors: W Meng, X Wang, Z Xiao, J Wang, DB Mitzi, Y Yan
Journal: The Journal of Physical Chemistry Letters

“Color” level sets: a multi-phase method for structural topology optimization with multiple materials
Authors: MY Wang, X Wang
Journal: Computer Methods in Applied Mechanics and Engineering

An inactivated enterovirus 71 vaccine in healthy children
Authors: R Li, L Liu, Z Mo, X Wang, J Xia, Z Liang, Y Zhang, Y Li, Q Mao, J Wang, ...
Journal: New England Journal of Medicine

Xin (Cissy) Ma – Water Resources Engineering – Best Researcher Award

Xin (Cissy) Ma - Water Resources Engineering - Best Researcher Award

U.S. Environmental Protection Agency - United States

AUTHOR PROFILE

ORCID
SCOPUS

SUMMARY

Xin (Cissy) Ma is a leading environmental engineer at the U.S. Environmental Protection Agency with a strong record in sustainable water systems, life cycle assessment, and resource recovery. With decades of experience in federal research, Ma has played a crucial role in developing tools and strategies to inform urban water reuse, address emerging contaminants, and enhance wastewater treatment. She is widely recognized for her contributions to systems analysis, policy engagement, and interagency collaboration, significantly advancing national efforts toward a net-zero water economy and climate resilience in environmental infrastructure.

PROFESSIONAL EXPERIENCE

Serving as a senior research environmental engineer at the EPA, Xin Ma has progressed through a distinguished federal career. Her work spans technical research, strategic program leadership, and stakeholder engagement. At the EPA's Cincinnati and Athens labs, she has led numerous research initiatives focused on decentralized water reuse, nutrient recovery, and emergy accounting. She has also served as a Contracting Officer’s Representative and Principal Investigator on major projects, advancing sustainability goals across multiple EPA programs. Her extensive involvement in grant reviews, technical writing, and expert panels further reflects a comprehensive and impactful professional journey.

RESEARCH INTEREST

Ma's research focuses on sustainable urban water systems, water reuse, life cycle and cost assessment, and nutrient recovery. Her investigations aim to optimize the environmental and economic performance of water and wastewater treatment technologies. With a multidisciplinary systems approach, she explores how emerging contaminants, climate variability, and circular resource flows impact water infrastructure. A significant emphasis is placed on integrating ecological accounting metrics like emergy into life cycle thinking. Her work supports resilient infrastructure development, particularly in decentralized and fit-for-purpose water reuse strategies, promoting equity, efficiency, and sustainability in environmental decision-making.

AWARD AND HONOR

Xin Ma has received numerous accolades, including the 2025 AWWA ACE Water 2050 MVP for Net Zero Water Economy and multiple U.S. EPA Scientific and Technological Achievement Awards. Her service has been recognized with honors from the White House Office of Science and Technology Policy for contributions to IPCC reviews. A consistent recipient of superior performance awards across various EPA divisions, her recognition spans over a decade. These honors reflect the national and international impact of her technical leadership, scientific excellence, and commitment to environmental innovation and sustainable development.

RESEARCH SKILL

Ma possesses expert-level skills in life cycle assessment, cost-benefit analysis, emergy accounting, and sustainability metrics. Her capabilities include modeling water reuse systems, evaluating environmental tradeoffs, and using integrated decision-support tools. She has led interdisciplinary teams in developing EPA-endorsed software such as the NEWR Calculator and the UEV Library. Her research integrates quantitative and qualitative metrics, blending environmental science, policy, and engineering. With a solid foundation in experimental design, data interpretation, and regulatory alignment, Ma excels in translating complex data into practical solutions for federal policy and sustainable infrastructure planning.

PUBLICATIONS

Title: Environmental Impacts and Cost of a Water Quality Trading Approach for NPDES Nutrient Permit Compliance in a Rural Watershed
Authors: Sam Arden; Ben Morelli; Joe Miller; Sagarika Rath; Jennifer Ferrando; George Azevedo; Smiti Nepal; Bayou Demeke; Xin (Cissy) Ma
Journal: Water Research X, 2025


Title: Onsite Non-potable Reuse for Large Buildings: Environmental and Economic Suitability as a Function of Building Characteristics and Location
Authors: Sam Arden; Ben Morelli; Sarah Cashman; Xin (Cissy) Ma; Michael Jahne; Jay Garland
Journal: Water Research, 2021


Title: Human Health, Economic and Environmental Assessment of Onsite Non-Potable Water Reuse Systems for a Large, Mixed-Use Urban Building
Authors: Sam Arden; Ben Morelli; Mary Schoen; Sarah Cashman; Michael Jahne; Xin (Cissy) Ma; Jay Garland
Journal: Sustainability, 2020


Title: Holistic Analysis of Urban Water Systems in the Greater Cincinnati Region: (1) Life Cycle Assessment and Cost Implications
Authors: Xiaobo Xue; Sarah Cashman; Anthony Gaglione; Janet Mosley; Lori Weiss; Xin Cissy Ma; Jennifer Cashdollar; Jay Garland
Journal: Water Research X, 2019


Title: Holistic Analysis of Urban Water Systems in the Greater Cincinnati Region: (2) Resource Use Profiles by Emergy Accounting Approach
Authors: Sam Arden; Xin (Cissy) Ma; Mark Brown
Journal: Water Research X, 2019

 

CONCLUSION

Through a career grounded in research excellence and public service, Xin Ma exemplifies leadership in sustainable water infrastructure and environmental systems thinking. Her contributions have driven forward national priorities in climate adaptation, water reuse, and resource efficiency. By integrating science, engineering, and policy, she delivers solutions that support resilient communities and ecological health. From tool development to global collaboration on climate reports, her influence spans local, national, and international levels. Xin Ma continues to shape the future of environmental engineering through rigorous analysis, stakeholder engagement, and innovation in sustainability practices.

Kmar M’Bareks | Sustainable Development | Best Researcher Award

Kmar M’Bareks | Sustainable Development | Higher Institute of Agronomy of Chott Meriem

EARLY ACADEMIC PURSUITS:

KMAR M’BAREK's academic journey commenced in 1987 with a Bachelor's Degree in Mathematical Sciences from Taher Sfar High School in Mahdia, Tunisia. Subsequently, he earned a Master's Degree in Natural Sciences in 1995 from the Faculty of Sciences, Sfax, Tunisia. His educational pursuits continued with a Master of Research in Industrial Biotechnology from INSAT, Tunis, Tunisia, in 2007. In 2017, he attained a Ph.D. in Biological Sciences and Biotechnology from the Institute of Agronomy of Chott Meriam, Sousse, Tunisia.

PROFESSIONAL ENDEAVORS:

Since 1995, KMAR M’BAREK has dedicated his expertise to the field of education, serving as a Life and Earth Sciences Teacher at the secondary school level.

CONTRIBUTIONS AND RESEARCH FOCUS:

KMAR M’BAREK has made significant contributions to the scientific community, particularly in the realm of allelopathy and phytotoxicity. As the primary author of four publications, his research explores the effects of allelochemicals on germination and growth in agricultural crops. His work delves into the chemical composition and phytotoxicity of specific plant species, contributing valuable insights to the field.

ORCID
Scopus
IMPACT AND INFLUENCE:

With a focus on allelopathic effects and the mode of action of allelochemicals, M’BAREK's research has the potential to influence agricultural practices and plant biology. The international recognition of his work, as demonstrated by authoring and presenting at scientific congresses, underscores the impact of his research on a global scale.

ACADEMIC CITATIONS:

While specific citation metrics are not provided, the publication of four scientific articles indicates a scholarly impact, with potential citations and references within the scientific community.

LEGACY AND FUTURE CONTRIBUTIONS:

M’BAREK's legacy lies in his commitment to scientific inquiry, contributing valuable knowledge to the understanding of allelopathy and its implications for agriculture. His ongoing and future contributions are anticipated to further enrich the field of Life and Earth Sciences.

Mahdi Nematzadeh | Structural Engineering | Best Researcher Award

Mahdi Nematzadeh | Structural Engineering | University of Mazandaran

EARLY ACADEMIC PURSUITS:

Mahdi Nematzadeh embarked on his academic journey at the University of Mazandaran, laying the groundwork for a distinguished career. His early academic pursuits were characterized by a commitment to excellence, establishing a solid foundation for his future endeavors.

PROFESSIONAL ENDEAVORS:

In the professional realm, Mahdi has navigated diverse roles, contributing significantly to his field. These experiences have ranged from research positions to active involvement in projects, showcasing his versatility and practical engagement with the subject matter.

CONTRIBUTIONS AND RESEARCH FOCUS:

Mahdi's contributions to academia are marked by a dedicated focus on research. His work reflects a commitment to advancing knowledge within his domain, with a specific emphasis on a defined research focus. Whether through publications, projects, or collaborations, Mahdi has actively contributed to the academic landscape.

NOTABLE PUBLICATION

Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene.  2017 (317)

Scopus

Google Scholar

IMPACT AND INFLUENCE:

Mahdi's impact extends beyond his immediate circles, influencing peers and the broader academic community. Whether through innovative research methodologies, paradigm-shifting concepts, or collaborative initiatives, he has left a lasting impression on the trajectory of his field.

ACADEMIC CITATIONS:

Mahdi's research output is reflected in academic citations, a testament to the relevance and significance of his work. The acknowledgment and referencing of his contributions within scholarly publications underscore the academic impact he has made.

LEGACY AND FUTURE CONTRIBUTIONS:

Looking to the future, Mahdi's legacy lies in the foundations he has laid and the paths he has forged. His ongoing and potential future contributions hold the promise of further enriching the academic landscape, with an enduring impact on the field of study.

Ioanna Mitropoulou |  Geometry processing | Best Researcher Award

Ioanna Mitropoulou |  Geometry processing | ETH Zurich

EARLY ACADEMIC PURSUITS:

Ioanna Mitropoulou commenced her academic journey with a solid foundation in architecture, completing her Masters and Bachelor's degrees in the field with exemplary academic achievements. Her pursuit of excellence continued with studies in architecture, including an enriching Erasmus experience, contributing to a well-rounded educational background.

PROFESSIONAL ENDEAVORS:

Ioanna's professional journey has been marked by diverse experiences, notably as a Computational Designer at Esri R&D Center in Athens and an Intern in the Fab Lab of IAAC, Barcelona. Her roles involved computational design, programming, and robotic fabrication, showcasing her versatility and hands-on experience in the field.

CONTRIBUTIONS AND RESEARCH FOCUS:

Ioanna's contributions to the field of architecture and digital fabrication are evident in her impactful research. Her work on procedural urban environment generation, virtual reality visualization of urban projects, and her thesis on connecting elements using WAAM robotic additive manufacturing highlight her commitment to pushing the boundaries of computational design and fabrication.

NOTABLE PUBLICATION

Fabrication-Aware Strip-Decomposable Quadrilateral Meshes.  

ORCID
IMPACT AND INFLUENCE:

Ioanna's impact extends beyond her professional roles; her publications in reputable journals and participation in conferences demonstrate her influence in the realm of architectural innovation. Notably, her research on non-planar 3D printing has garnered attention, contributing to advancements in the field.

ACADEMIC CITATIONS:

Ioanna's research, as evidenced by her publications, has received recognition within the academic community. Her work on non-planar 3D printing, robotic fabrication, and volumetric modeling tools has contributed to the academic discourse, with notable publications in journals such as the '3D Printing and Additive Manufacturing' journal.

LEGACY AND FUTURE CONTRIBUTIONS:

As Ioanna embarks on her doctoral studies at ETH Zurich, her focus on 'Free-oriented Layered Morphologies' indicates a continuation of her pioneering work in computational methods for non-planar robotic 3D printing. Her involvement in teaching, supervision, and the development of open-source software reflects a commitment to shaping the future of digital fabrication and architectural design.

Sandra Matarneh | Environmental Engineering | Women Researcher Award

Sandra Matarneh | Environmental Engineering | Al Ahliyya Amman University

EARLY ACADEMIC PURSUITS:

Sandra Matarneh embarked on her academic journey with early pursuits at Al Ahliyya Amman University. The specifics of her initial academic endeavors, including areas of study and academic achievements during this formative period, have likely played a foundational role in shaping her scholarly interests.

PROFESSIONAL ENDEAVORS:

As Sandra Matarneh progressed in her academic journey, she ventured into the professional realm, applying her knowledge and skills. Details regarding specific roles, projects, or collaborations in her professional endeavors would shed light on the practical applications of her academic background.

CONTRIBUTIONS AND RESEARCH FOCUS:

Matarneh's contributions and research focus are crucial aspects of her academic and professional identity. Whether through publications, projects, or innovative solutions, understanding her contributions to her field and the areas of research she prioritizes provides insights into her intellectual impact.

ORCID
IMPACT AND INFLUENCE:

Assessing Matarneh's impact and influence involves recognizing the broader effects of her work. This could include positive outcomes in academia, acknowledgment within her professional network, and any influence she may have had on students, colleagues, or the academic community at large.

ACADEMIC CITATIONS:

An indicator of Matarneh's scholarly influence is reflected in her academic citations. High citation metrics would suggest that her research has made a significant contribution to the academic discourse, with fellow researchers and scholars referencing her work in their own studies.

FUTURE CONTRIBUTIONS:

Looking forward, Matarneh's future contributions may involve continued advancements in her academic and professional pursuits. This could include further research, participation in impactful projects, and potentially taking on leadership roles that contribute to the growth and development of Al Ahliyya Amman University.

Amir Ali | Sustainable Development | Best Researcher Award

Amir Ali | Sustainable Development | Lakehead University

EARLY ACADEMIC PURSUITS:

Amir Ali's academic journey commenced with a strong foundation, leading to his current pursuit of a Ph.D. in Civil Engineering at Lakehead University. His educational achievements include outstanding performances in both his MSc. at Qingdao University of Technology, China, and BSc. at the University of Engineering and Technology Peshawar, Pakistan.

PROFESSIONAL ENDEAVORS:

While Amir Ali is still immersed in his Ph.D. studies, his professional journey is marked by prolific research and contributions to the field. His engagement in conferences, such as the 1st International Conference on Recent Advances on Civil and Earthquake Engineering, showcases a commitment to sharing and advancing knowledge.

CONTRIBUTIONS AND RESEARCH FOCUS:

Amir Ali's contributions to Civil Engineering are substantial, as reflected in his numerous published journal papers. His research focuses on diverse areas such as seismic isolation systems, structural dynamics, and the durability of concrete. Notably, his work on a controlled-sliding-based isolation system and low-cost friction-based isolation systems demonstrates innovation in earthquake engineering.

NOTABLE PUBLICATION
ORCID
IMPACT AND INFLUENCE:

Amir Ali's impact extends beyond publications; he has been recognized with awards, including the Best Paper award at the 1st International Conference on Recent Advances on Civil and Earthquake Engineering. His dynamic contributions to understanding seismic protection for masonry structures highlight his influence on the field.

ACADEMIC CITATIONS:

Amir Ali's work has garnered attention, evident in the citations and recognition his publications have received. With a Google Scholar profile, he remains connected to the academic community, fostering collaboration and the exchange of ideas.

LEGACY AND FUTURE CONTRIBUTIONS:

Amir Ali's legacy is already taking shape through his impactful research. His diverse research interests, spanning from thermal insulation to high-performance concrete, indicate a broad and enduring contribution to the field. The future holds promise for his continued influence on the understanding and improvement of civil engineering practices.