Ting-Yu Fan – Structural Engineering – Best Researcher Award

Ting-Yu Fan | Structural Engineering | Best Researcher Award

National Atomic Research Institute - Taiwan

AUTHOR PROFILE

ORCID

SCOPUS

SUMMARY

Ting-Yu Fan is a dedicated engineer and researcher at the National Atomic Research Institute, Taiwan. His expertise spans seismic analysis, soil-structure interaction, and thermal-hydraulic coupling, with a strong focus on nuclear and renewable energy infrastructures. Having contributed to international collaborative projects like DECOVALEX, he brings global perspective and depth to structural safety assessments. Through multidisciplinary research, industry consultancy, and cutting-edge modeling work, Fan continues to make notable advances in the safety and performance of critical energy systems under extreme environmental conditions.

EDUCATION

Ting-Yu Fan completed his Master of Engineering at National Cheng Kung University, Taiwan. His academic foundation centers on structural integrity assessment, seismic performance, and coupled thermal-hydraulic analysis. These areas laid the groundwork for his contributions to national and international research, especially in structural modeling and nuclear energy safety. His education provided the theoretical and technical base to tackle complex challenges in energy systems, particularly those involving fault mechanics, soil-structure interaction, and the behavior of engineered systems under extreme stress conditions.

PROFESSIONAL EXPERIENCE

Currently serving at the National Atomic Research Institute, Fan leads and participates in several government and industry-funded projects on nuclear safety and structural resilience. His prior engagements include critical work on offshore wind turbine support structures and safety cases for spent nuclear fuel disposal. He has contributed to structural evaluations against natural disasters such as typhoons and earthquakes. His professional journey reflects a continuous effort to bridge theoretical modeling with real-world engineering solutions in high-risk and sensitive infrastructures.

RESEARCH INTEREST

Ting-Yu Fan’s research interests span seismic performance evaluation of nuclear infrastructure, structural integrity under multi-hazard conditions, safety case development for spent nuclear fuel disposal, and advanced numerical modeling. He is particularly engaged in soil-structure interaction studies and fault reactivation modeling. His work also includes pioneering research in seismic isolation technologies for small modular reactors and extreme load responses of offshore wind support systems. These themes converge in his quest to enhance the safety, reliability, and sustainability of modern energy infrastructures.

AWARD AND HONOR

Ting-Yu Fan’s selection and participation in the DECOVALEX international research initiative reflect peer recognition of his expertise. His leadership roles in high-stakes government-funded projects further demonstrate his standing in Taiwan’s nuclear and structural engineering communities. His publications and project outcomes have contributed significantly to both academic knowledge and practical advancements in infrastructure safety, earning him a reputation as a trusted expert in the seismic and structural behavior of critical energy systems.

RESEARCH SKILL

Ting-Yu Fan brings advanced skills in seismic analysis, THM modeling, structural integrity evaluation, and numerical simulations. His toolkit includes fault activation modeling, soil-structure interaction analysis, and safety case development for complex nuclear systems. He is proficient in handling multidisciplinary data for integrated assessments of structural and geotechnical systems under environmental stressors. His ability to interpret seismic and thermal data and simulate real-world behaviors under extreme conditions stands as a cornerstone of his research success.

PUBLICATIONS

Title: Modeling the Influence of Soil-Structure-Interaction on Seismic Response of Jacket Substructure for the DTU 10MW Offshore Wind Turbine
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2022)

Title: Strength Analysis for a Jacket-Type Substructure of an Offshore Wind Turbine under Extreme Environment Conditions
Authors: Fan, T.-Y.; Chen, S.-H.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Time-Domain Fatigue Analysis of Multi-Planar Tubular Joints for a Jacket-Type Substructure of Offshore Wind Turbines
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Fatigue Analysis for Jacket-Type Substructure of 5MW Offshore Wind Turbine in Time Domain and Evaluation of Fatigue Damage
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Journal of the Chinese Institute of Civil and Hydraulic Engineering (2018)

Title: Numerical Fatigue Analysis for Jacket-Type Substructure of Offshore Wind Turbines under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2018)

Title: Fatigue Analysis for Jacket-Type Support Structure of Offshore Wind Turbine under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2017)

Title: Reissner's Mixed Variational Theorem-Based Finite Cylindrical Layer Methods for the Three-Dimensional Free Vibration Analysis of Sandwich Circular Hollow Cylinders with an Embedded Functionally Graded Material Layer
Authors: Wu, C.-P.; Fan, T.-Y.; Li, H.-Y.
Journal: Journal of Vibration and Control (2014)

CONCLUSION

Ting-Yu Fan exemplifies a modern researcher committed to public safety and energy resilience. His interdisciplinary approach blends engineering rigor with policy-oriented research outcomes. Through his contributions to nuclear safety, renewable energy systems, and geotechnical modeling, he enhances the scientific foundations for infrastructure design in seismically active and environmentally challenging regions. His work continues to impact engineering practices, regulatory standards, and academic collaboration, positioning him as a key contributor to the evolving field of energy systems engineering.