Azunna Sunday | Structural Engineering | Best Researcher Award

Mr. Azunna Sunday | Structural Engineering | Best Researcher Award

Doctoral Researcher | Housing research centre | Malaysia

Mr. Azunna Sunday Ugochukwu has established a strong professional and research background in civil and structural engineering, with notable expertise in sustainable construction materials, structural analysis, and project management. His career includes extensive work in both academic and industrial settings, where he contributed to the design and execution of major infrastructure projects such as residential complexes, university facilities, religious centers, and extensive road networks across Nigeria. At Universiti Putra Malaysia, his research has focused on innovative materials for civil engineering applications, including coconut shell, palm kernel shell, recycled bricks, granite powder, and rubberized geopolymer concrete, leading to multiple publications in reputable international journals. His scholarly contributions span experimental and review studies, addressing compressive strength, stress-strain behavior, and dynamic response of advanced concrete materials, demonstrating his capacity to integrate environmental sustainability with engineering performance. Beyond research, Azunna has engaged in professional workshops on structural modeling, design, and detailing, sharing expertise with institutions such as Federal Polytechnic Bauchi and Abubakar Tafawa Balewa University. His memberships with COREN, the Nigerian Institution of Civil Engineers, and the Nigerian Society of Engineers affirm his commitment to professional standards and development within the engineering community. With experience as an assistant structural engineer, assistant project manager, and doctoral researcher, he has consistently demonstrated versatility in applying theoretical knowledge to practical engineering challenges. His skill set includes advanced structural design software, AutoCAD, drone operation, and engineering instrumentation, underscoring his technological adaptability. The scope of his executed projects—from institutional buildings to healthcare facilities and leisure parks—highlights his versatility and capacity to manage diverse engineering assignments effectively. His growing academic output, combined with practical project delivery, positions him as a significant contributor to advancing civil engineering knowledge and practice. Engr. Azunna Sunday Ugochukwu has achieved 120 Citations, 8 Documents, and 5 h-index.

Featured Publications:

Azunna, S. U. (2019). Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Applied Sciences, 1(4), 342.

Azunna, S. U., Aziz, F. N. A. A., Rashid, R. S. M., & Bakar, N. B. A. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237.

Azunna, S. U., Aziz, F. N. A. A., Cun, P. M., & Elhibir, M. M. O. (2019). Characterization of lightweight cement concrete with partial replacement of coconut shell fine aggregate. SN Applied Sciences, 1(6), 649.

Azunna, S. U., Aziz, F. N. A. A., Bakar, N. A., & Nasir, N. A. M. (2018). Mechanical properties of concrete with coconut shell as partial replacement of aggregates. IOP Conference Series: Materials Science and Engineering, 431(3), 032001.

Azunna, S. U., Aziz, F. N. A. B. A., Al-Ghazali, N. A., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225.

Javad Mokari – Concrete Design and Retrofit – Best Researcher Award

Javad Mokari | Concrete Design and Retrofit | Best Researcher Award

Civil Engineering | Urmia University of Technology | Iran

Javad Mokari Rahmdel has developed a strong research career in civil and earthquake engineering, focusing on seismic performance evaluation, rehabilitation, and structural control. His work emphasizes the resilience of reinforced concrete and steel structures, retrofitting techniques, and advanced materials such as carbon fiber-reinforced polymers and shape memory alloys. Publications demonstrate his expertise in both experimental and numerical approaches, addressing challenges like confinement, retrofitting, and dynamic response of structures under seismic loads. He has contributed to seismic rehabilitation strategies through analytical modeling, innovative jacketing systems, and performance-based assessment of structures. Javad Mokari Rahmdel has extended his research to geotechnical aspects, structural dynamics, and seismic hazard mitigation, presenting findings at national and international conferences. His authored books on steel and concrete construction monitoring showcase his ability to link theoretical concepts with practical engineering applications. He has supervised numerous postgraduate theses and participated in multiple funded research projects, reinforcing his commitment to advancing earthquake-resistant design. His teaching portfolio, covering advanced mathematics, elasticity, structural stability, reinforced concrete design, and hazard analysis, highlights his role in shaping future engineers. In addition, his professional activities include leadership positions in academic and technical committees, active membership in engineering associations, and delivering specialized workshops and lectures on seismic safety. His recent collaborations explore high-strength materials, nonlinear modeling, and innovative retrofitting strategies to address modern challenges in structural engineering. Through multidisciplinary engagement and consistent scholarly output, Javad Mokari Rahmdel has built a comprehensive research profile that contributes significantly to seismic risk reduction, resilient infrastructure design, and sustainable urban development, establishing him as a recognized academic and practitioner in earthquake engineering and structural mechanics.

Profile: Scopus | Google Scholar
Publications:

Xupei Yao – Structural Engineering – Best Researcher Award

Xupei Yao - Structural Engineering - Best Researcher Award

Zhengzhou University - China

AUTHOR PROFILE

SCOPUS

🧬 SUMMARY 

Xupei Yao stands as a dynamic figure in civil engineering, with particular expertise in advanced cementitious composites, nanomaterials, and sustainable construction. The academic trajectory encompasses a Ph.D. from Monash University, where groundbreaking research set the stage for a prolific career. With international collaborations and multidisciplinary integration, work has centered around solving complex engineering problems through innovative material design and nanotechnology. Publications reflect an evolving exploration into material properties, durability enhancement, and environmental performance, particularly within the context of climate-conscious infrastructure. Contributions not only enhance fundamental knowledge but also offer transformative insights into construction materials capable of performing under harsh environmental stressors. By merging simulation, experimentation, and field-based insights, the research trajectory continues to address challenges in structural durability, energy efficiency, and environmental impact. Recognition as a leading young researcher in China further underscores a growing influence in the global academic and engineering community.

🎓 EARLY ACADEMIC PURSUITS

Academic development began with a Bachelor of Civil Engineering under a prestigious 2+2 program jointly organized by Monash University and Central South University. This foundational training offered a robust understanding of both Western and Eastern engineering perspectives. The undergraduate years were marked by excellence, achieving First Class Honors and initiating a fascination with construction materials and their microstructural behavior. Building on this early interest, a Ph.D. in Civil Engineering at Monash University followed, with research emphasizing advanced composites, graphene integration, and nanoscale interactions in cement systems. A strong focus was placed on interface mechanics, reinforcing mechanisms, and multi-scale modeling, which laid the groundwork for future investigations. Graduate studies were supported by esteemed scholarships including the Monash Graduate Scholarship and International Postgraduate Research Scholarship. These formative years reflect a consistent drive toward technical mastery, research innovation, and academic distinction, preparing the foundation for an internationally recognized research portfolio.

🏗️ PROFESSIONAL ENDEAVORS IN ENGINEERING

The professional journey features key roles across leading institutions. Currently serving as Associate Professor at the School of Water Conservancy and Transportation, Zhengzhou University, responsibilities encompass research leadership, mentoring, and curriculum development. Prior to this, tenure at Monash University included multiple capacities—ranging from Research Officer to key contributor within the ARC Nanocomm Hub. This phase nurtured interdisciplinary collaborations and facilitated engagement with nanotechnology applications in construction. Participation in international conferences and peer-reviewed forums reinforced a reputation for precision, innovation, and analytical rigor. Projects undertaken span from fiber-reinforced composites to advanced thermal regulation materials, showcasing a robust capacity to translate theory into practical applications. Whether through lab-based experiments, numerical simulation, or policy-aligned research, the career consistently integrates academic depth with societal relevance. The professional arc reflects a fusion of innovation, education, and global engagement, establishing a firm position in the field of advanced civil infrastructure materials.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Central research themes include high-performance cementitious composites, nanomaterial enhancement, graphene-based fiber reinforcement, radiative cooling materials, and image-based microstructural analysis. Studies such as those on graphene oxide's interaction with cement mortar and hybrid effects in fiber-reinforced mortars have contributed significantly to understanding material durability and strength. A novel integration of coarse-grained molecular dynamics simulations has enabled deeper analysis of polymers at nanoscale, aiding the development of next-generation materials. Recent explorations into passive radiative cooling using nanophotonic structures signal an expansion toward energy-efficient and climate-responsive building systems. Research has also introduced deep learning tools to interpret cement hydration, exemplifying a multidisciplinary approach that blends materials science, computer vision, and sustainability. These contributions offer both academic significance and practical application, providing durable, intelligent, and green solutions for civil infrastructure. The impact resonates through the built environment, where every innovation contributes to safer, smarter, and more sustainable development.

🏅 ACCOLADES AND RECOGNITION

Recognition spans across national and international domains. In China, status as a recipient of the National Overseas Young Talents Award and the Outstanding Young Talents of Zhongyuan has reinforced standing as a leading figure in materials engineering. Prestigious fellowships such as the Monash Graduate Scholarship and the Monash International Postgraduate Research Scholarship supported early scholarly achievements and recognized the high potential for impactful research. During the doctoral phase, the Graduate Research Completion Award further validated academic excellence and research timeliness. Invitations to present at world-class forums such as the World Engineers Convention and the Australian Industrial Hemp Conference showcase peer recognition. Authorship in high-impact journals like Construction and Building Materials, Materials & Design, and Journal of Applied Polymer Science testifies to the rigor and innovation of contributions. These accolades affirm not only scientific merit but also the capacity to influence engineering practice and inspire future directions in material innovation.

🌍 IMPACT AND INFLUENCE IN THE FIELD

The influence of this work extends from scholarly circles to practical engineering domains. Research findings have contributed to redefining the performance expectations of cement-based materials, especially through the integration of graphene, nanofillers, and advanced polymers. Insights into interfacial behavior and microstructure evolution inform the design of more durable and adaptable infrastructure materials. Tools such as deep learning for microstructure analysis and the development of radiative cooling surfaces contribute to energy sustainability in urban environments. The cross-disciplinary nature of the research—bridging physics, chemistry, materials science, and structural engineering—has spurred innovations not only in academia but also in real-world construction technology. The vision integrates societal challenges such as climate change, urban resilience, and material scarcity with scientific discovery. Through mentorship, collaboration, and publication, this impact resonates across continents, cementing a legacy of meaningful contributions to engineering science and applied material innovation.

🧭 LEGACY AND FUTURE CONTRIBUTIONS

Future directions aim to deepen the integration of artificial intelligence, sustainable design, and material innovation in civil infrastructure. A continued focus on nanotechnology will advance the development of smart materials capable of self-sensing, environmental adaptability, and long-term durability. The ambition includes scaling laboratory findings into industry-ready solutions that align with carbon-neutral goals and low-energy construction practices. By collaborating across universities, government bodies, and private sectors, forthcoming work will drive translational research that reshapes construction from the molecular scale up. Educational leadership at Zhengzhou University ensures a growing influence on the next generation of engineers and scientists, embedding a culture of sustainability and scientific rigor. As global challenges intensify—urbanization, climate stress, and material limitations—the research path set forth offers a blueprint for innovation. The evolving legacy remains one of transformation, dedication, and vision, contributing decisively to both the knowledge economy and the resilience of future infrastructures.

NOTABLE PUBLICATIONS

Title: Experimental study on the shearing mechanical behavior of contact surface between polydimethylsiloxane modified polyaspartate polyurea and concrete
Journal: Construction and Building Materials (2025)

Title: A Deep Learning-Based Study of the Role of Graphene Oxide Nanosheets on the Microstructure of Cement Paste
Journal: ACS Applied Nano Materials (2025)

Title: Experimental Study on the Strengthening Effect of Polyaspartate Polyurea Lining on Concrete Pipes
Journal: Journal of Applied Polymer Science (2025)

Yaoqing Gong – Structural Engineering – Best Researcher Award

Yaoqing Gong - Structural Engineering - Best Researcher Award

Henan Polytechnic University - China

AUTHOR PROFILE

SCOPUS
ORCID

SUMMARY

Yaoqing Gong is a distinguished academic in civil and structural engineering, currently serving as Chair Professor at Henan Polytechnic University. With over four decades of teaching, research, and engineering practice, the expertise encompasses semi-analytical structural analysis, finite element modeling, and torsional analysis of complex structures. Editorial roles, committee memberships, and national-level research projects illustrate a strong reputation in academia. Recognized by leading institutions in China, including the Ministry of Education and National Natural Science Foundation, the work influences tall building mechanics and computational analysis. Extensive publications and involvement in conference proceedings highlight an active presence in both theoretical and applied engineering domains.

EDUCATION

Completed a Ph.D. in Civil Engineering at Tsinghua University, renowned for engineering excellence. Previously earned a Master’s degree in Mechanical Engineering from Huazhong University of Science and Technology and a Bachelor’s degree from Ningxia University. The academic progression reflects a deep foundation in engineering sciences, transitioning from mechanical to civil specializations. The multidisciplinary training has significantly shaped advanced research contributions in structural mechanics, particularly in analyzing super-tall buildings and complex beam structures. The educational journey through top-tier Chinese institutions has laid the groundwork for a highly productive academic and research career across decades in civil infrastructure development and modeling.

PROFESSIONAL EXPERIENCE

Began academic career as Assistant Lecturer at Ningxia University, progressing through Lecturer, Associate Professor, and Professor roles from 1981 to 2001. Since 2001, appointed as Chair Professor at Henan Polytechnic University, leading major initiatives in structural engineering. Held several key academic responsibilities, contributing to curriculum design and research mentorship. A strong connection with national academic bodies such as the Ministry of Education and NSF of China has ensured relevance and impact in teaching and applied research. Professional duties have also extended to evaluating high-level research proposals and participating in national engineering education committees, reflecting trust and leadership in the field.

RESEARCH INTEREST

Core research interests include semi-analytical methods for analyzing dynamic loads on super-tall buildings and long-span bridges, torsional behavior of noncircular beam sections, and structural interactions with elastic subgrades. Work is heavily focused on theoretical mechanics, generalized-area-coordinate systems, and conforming finite element formulations. Special emphasis is placed on dynamic load modeling and the interaction between foundation and superstructures, particularly under spatial or multi-directional loading. Research bridges practical civil infrastructure challenges with computational mechanics innovation, advancing knowledge in constrained torsion and spatial vibration of complex geometries. Integration of analytical theory and real-world applications characterizes all research endeavors and academic outputs.

AWARD AND HONOR

Honored with roles that reflect academic prestige, including Editorial Board Membership in the Journal of Engineering Mechanics (Chinese) and Committee Member of the Mechanics Instruction Committee, Ministry of Education, China. Selected as a referee for high-impact national research proposals under the Department of Engineering & Material Science, NSF of China. Contributions to national research projects and leadership in university-affiliated foundations also serve as testimony to recognition by peers. The ability to influence educational and research standards at national levels is a distinguishing achievement. These roles underscore trust, influence, and merit across China’s academic and engineering science communities.

RESEARCH SKILL

Expert in developing semi-analytical and finite element models for structural analysis under dynamic and complex boundary conditions. Advanced in formulating generalized conforming finite elements and utilizing generalized-area-coordinate systems. Skilled in solving torsional behavior for constrained, variable thickness beams with arbitrary noncircular shapes. Familiar with both theoretical development and application to large-scale infrastructure such as super-tall buildings and bridges. Possesses hands-on design experience, including work with steel tower structures for astronomical observatories. Capable of integrating analytical theory with field application, contributing both to academia and practical engineering. Strong background in mathematical modeling, ODE solvers, and high-performance structural analysis.

PUBLICATIONS TOP NOTED

Published in prestigious journals such as Composite Structures, Engineering Structures, European Journal of Mechanics/A Solids, and MethodsX. Key contributions include innovative constrained torsional analysis, theories for stocky beams with noncircular cross-sections, and finite element formulations for thick plate-shell elements. Authored books like “Structural Mechanics” and “Tall Building Structures on Elastic Subgrade,” which serve as foundational texts in Chinese structural engineering education. Presented work at global conferences including the World Congress on Computational Mechanics. Collaborated with notable researchers on interdisciplinary projects, ensuring international visibility. Research outputs continue to shape methodologies used in modern civil engineering and computational structural mechanics.

Title: Composite stocky box girders of variable thickness in high-support expressways: Constrained torsional analysis
Authors: [Not specified]
Journal: Engineering Structures (2021)

Title: An innovative method for surmounting the constrained torsional problems of stocky beams with arbitrary noncircular cross-sectional shapes and with arbitrary elastic material properties
Authors: [Not specified]
Journal: MethodsX (2021)

Title: The torsional centre position of stocky beams with arbitrary noncircular cross-sectional shapes and with arbitrary elastic material properties
Authors: [Not specified]
Journal: European Journal of Mechanics A: Solids (2021)

CONCLUSION

Yaoqing Gong’s contributions span theoretical development, practical design, high-level academic mentorship, and national-level advisory roles. Strong expertise in civil and structural engineering mechanics is demonstrated through sustained publications, impactful research funding, and leadership roles within Chinese engineering education. The emphasis on semi-analytical methods and computational mechanics provides critical solutions for modern engineering problems such as super-tall structures, complex torsional analysis, and elastic subgrade interaction. Through integration of teaching, research, and applied science, continues to influence both academic frameworks and infrastructure practices. The profile stands as a model of excellence in civil engineering innovation, research integrity, and academic leadership.