Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

CEO | Nur Engineering GmbH | Germany

Saad A. A. Jabir’s research focuses on advancing condition monitoring and structural health assessment within civil engineering, emphasizing innovative sensor-based approaches for real-time evaluation of infrastructure performance. His primary contributions are in the development and application of thick-film ceramic sensors for measuring the strength and stability of civil structures. Jabir’s work demonstrates the potential of these sensors in providing accurate, durable, and responsive measurements that enhance the reliability and safety of infrastructure systems. Through his publications, he explores the integration of sensing technology into civil structures, enabling continuous monitoring that aids in preventive maintenance and early fault detection. His research also intersects materials science and measurement engineering, with attention to improving sensor materials’ thermal and mechanical resilience for field applications. By addressing challenges such as environmental variability and long-term stability of sensor outputs, Jabir contributes to making structural monitoring systems more adaptive and cost-effective. His studies have significant implications for modern smart infrastructure and sustainable construction practices, providing valuable insights into how sensor technologies can be scaled for large-scale engineering projects. His collaborative work reflects an interdisciplinary approach combining electrical engineering, materials research, and civil infrastructure monitoring to create robust diagnostic systems for critical assets. Saad A. A. Jabir’s research output, though concise, holds impactful applications for modern infrastructure management and reliability improvement in engineering systems. 60 Citations 3 Documents 2 h-index

Profile: Scopus
Featured Publications:

Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors. (2013). Measurement: Journal of the International Measurement Confederation.

Li Fen | Urban Planning | Best Researcher Award

Mrs. Li Fen | Urban Planning | Best Researcher Award

Mrs. Li Fen, a distinguished researcher and Chief Engineer at the Shenzhen Institute of Building Research Co., Ltd., has made significant contributions in the fields of sustainable urban development, ecological planning, and green building technologies. Her expertise lies in integrating the principles of energy efficiency, environmental protection, and urban livability into modern city design and planning. Over the past five years, Li Fen has led and participated in more than twenty research projects at both national and provincial levels, addressing critical intersections between energy systems and carbon emissions. Her major works include the Ministry of Science and Technology’s Intergovernmental International Science and Technology Innovation Cooperation Project on “Key Technologies and Demonstrations for Comprehensive Research on Urban Energy Systems and Carbon Emissions,” developed in collaboration with the Fraunhofer Institute for Solar Energy Systems (ISE). She also played a leading role in the Twelfth Five-Year National Science and Technology Support Program, focusing on “Green Building Planning Pre-Assessment and Diagnostic Technology Research.” Internationally, Li Fen has collaborated on eight major projects, including the World-Wide Fund for Nature (WWF)-funded “Shenzhen Climate Change Adaptation Strategy Research,” which provided strategic insights for urban climate resilience. In addition to her research leadership, she serves as an expert member for several organizations such as the Ministry of Science and Technology of China, the Ministry of Climate’s low carbon pilot projects, the Guangdong Provincial Department of Science and Technology, and the Tianjin Ecological Environment Bureau. Her participation in major carbon-neutral initiatives, including Zhejiang carbon-neutralization projects and World Bank IFC near-zero carbon emission programs, highlights her role in shaping low-carbon urban policies and practices in China. Li Fen’s scholarly impact reflects a deep commitment to advancing sustainable urban systems and environmental innovation. She has achieved 154 Citations, published 16 Documents, and holds an h-index of 8.

Profile: Scopus
Featured Publications:

Marie Giroudon – Civil and environmental engineering – Best Researcher Award

Marie Giroudon - Civil and environmental engineering - Best Researcher Award

INSA Toulouse - France

AUTHOR PROFILE

GOOGLE SCHOLAR 

SCOPUS

🔬 SUMMARY

Marie Giroudon is a pioneering researcher in civil engineering, specializing in the sustainability and durability of cementitious materials under aggressive conditions. Grounded in both academic excellence and hands-on experimentation, the work contributes meaningfully to environmental engineering and sustainable construction. With a strong interdisciplinary approach, Marie bridges civil engineering with microbiological and biochemical phenomena, particularly in the context of biogas and anaerobic digestion infrastructures. The research explores how binders, additives, and natural aggregates behave in corrosive environments, aiming to develop low-carbon, bio-integrated materials that withstand biodeterioration. The innovative contributions have gained recognition across both scientific and industrial communities, notably in Europe. Presently working as Maître de Conférences at INSA Toulouse, the career reflects a continuous trajectory of academic distinction, impactful collaborations, and scientific leadership. With a solid publication record and active roles in international working groups, Marie continues to shape the future of sustainable and durable construction materials research globally.

📘 EARLY ACADEMIC PURSUITS

Marie Giroudon’s academic path reflects a steady ascent through top-tier institutions and rigorous programs in science and engineering. The journey began with a Bachelor's degree in Physics at Université Toulouse III Paul Sabatier, attained with distinction. The foundation in physics cultivated a strong analytical and technical perspective, later channeled into civil and geotechnical engineering. The academic development continued through a Master’s and Engineering diploma from UPSSITECH, marked by honors and international exposure through a semester at Polytechnique Montréal. The formal academic training culminated in a PhD in Civil Engineering from INSA Toulouse, successfully defended in January 2021. The thesis explored interactions between biowaste in anaerobic digestion and cement-based materials, laying the groundwork for future innovations in eco-resilient infrastructure. Throughout this formative period, Marie consistently demonstrated high aptitude, curiosity, and commitment to research excellence, supported by prestigious grants and supervision under renowned French experts in materials durability and sustainable construction.

🏗️ PROFESSIONAL ENDEAVORS

Marie Giroudon's professional experience showcases a seamless blend of research, teaching, and interdisciplinary project leadership. Currently serving as Maître de Conférences at INSA Toulouse within the Laboratoire Matériaux et Durabilité des Constructions (LMDC), the role integrates research on cementitious materials with pedagogy across subjects such as BIM, geotechnics, and prestressed concrete. Previously, Marie contributed to cutting-edge postdoctoral projects like WWT Concrete, targeting sustainable solutions for wastewater infrastructure. These roles followed a rich doctoral journey supported by ANR BIBENdOM, focusing on how cement-based materials react in biodeteriorative, anaerobic conditions. Each professional role has been guided by a strong commitment to innovation and sustainability. With active involvement in mentoring research students and coordinating academic collaborations across institutions like EPFL and Université Gustave Eiffel, the career reflects a mature scientific vision combined with practical leadership in environmental and construction material research. These roles reinforce Marie's expertise in applying fundamental science to real-world engineering challenges.

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

The research of Marie Giroudon addresses critical challenges in environmental engineering by focusing on the durability of cementitious materials in chemically aggressive settings, particularly anaerobic digestion systems. By investigating alternative binders such as metakaolin geopolymers, blast-furnace slag cement, and calcium aluminate cement, the work contributes to lowering the environmental footprint of construction. Key innovations include identifying the biodeterioration kinetics and interaction mechanisms between organic matter and cement matrices. Marie's investigations into materials behavior under exposure to ammonium, organic acids, and fermentation byproducts are crucial for designing long-lasting bio-infrastructure. Collaborations with biotechnologists and environmental chemists have enriched these studies with multidisciplinary insights. Through over 15 peer-reviewed articles and numerous conference presentations, Marie has established a strong scientific presence in sustainable materials research. The work influences guidelines for agricultural and industrial infrastructure, particularly biogas plants, and contributes to European discussions on green civil engineering, forming the scientific basis for future innovations in eco-construction.

🏅 ACCOLADES AND RECOGNITION

Marie Giroudon has earned several recognitions that underscore both scientific excellence and community engagement. A prominent achievement includes winning the 3rd prize at the “Forum Jeunes Chercheurs” in Marne la Vallée for research on biodeterioration of cement materials—an acknowledgment of originality and societal relevance. As a dedicated member of international expert committees like RILEM TC 253-MCI and the French Civil Engineering Association’s “Bétons et Microorganismes” group, Marie contributes actively to shaping technical documentation and standards on microbial impacts on concrete. Participation in these expert networks reflects not only scientific credibility but also an enduring commitment to collaborative advancement. Furthermore, the invitation to contribute to state-of-the-art reports published by Springer, and repeated representation at top-tier conferences such as the International Congress on the Chemistry of Cement, highlight widespread recognition. These honors affirm Marie’s status as a rising leader in the domain of eco-resilient construction materials and sustainable civil infrastructure research.

🌍 IMPACT AND INFLUENCE

Marie Giroudon's research exerts tangible influence on both academic and applied sectors, particularly in the design and maintenance of biogas infrastructure and wastewater facilities. The interdisciplinary work directly informs environmental policy and engineering practices by providing evidence-based insights into material degradation in microbial and chemical environments. Collaborations with major public utilities like SIAAP and universities such as EPFL have fostered research-to-practice translation. The development of low-carbon, bio-integrated binders presents a promising direction in the global shift toward sustainable construction, aligning with EU climate goals. The work contributes significantly to reducing lifecycle emissions from concrete structures by substituting conventional Portland cement with geopolymer and aluminate alternatives. Moreover, Marie’s mentorship of graduate students ensures that this impact extends through a new generation of eco-conscious engineers. Through scholarly publications, cross-disciplinary research projects, and leadership in technical networks, the contributions continue to shape research trajectories, industrial protocols, and sustainability standards across Europe and beyond.

🧱 LEGACY AND FUTURE CONTRIBUTIONS

Marie Giroudon’s legacy lies in pioneering eco-durability within civil engineering and creating a research foundation that combines chemical resilience, microbial science, and materials engineering. The emerging expertise in micromechanical analysis and nanoindentation of cementitious composites paves the way for future breakthroughs in infrastructure diagnostics. Current recruitment for PhD and postdoctoral positions under Marie’s guidance signals a growing research lab ecosystem focused on innovative materials in leaching and bio-reactive environments. With active roles in scientific communities, the next decade is poised to see deeper exploration into LC3-type low-carbon materials, resistance modeling under multiaxial stress conditions, and long-term simulations of degradation pathways. Furthermore, the integration of sustainability into structural engineering curricula ensures lasting academic influence. With a track record of practical, publication-driven, and collaborative research, Marie’s future contributions will likely redefine durability standards for green buildings and bio-infrastructure, thereby reinforcing global efforts toward resilient, sustainable urban and rural development through advanced material science.

NOTABLE PUBLICATIONS

Title: Comparison of barley and lavender straws as bioaggregates in earth bricks
Authors: M. Giroudon, A. Laborel-Préneron, J.E. Aubert, C. Magniont
Journal: Construction and Building Materials, Vol. 202, pp. 254–265 (2019)

Title: Blast-furnace slag cement and metakaolin based geopolymer as construction materials for liquid anaerobic digestion structures: Interactions and biodeterioration mechanisms
Authors: M. Giroudon, M.P. Lavigne, C. Patapy, A. Bertron
Journal: Science of The Total Environment, Vol. 750, Article 141518 (2021)

Title: Cementitious materials in biogas systems: Biodeterioration mechanisms and kinetics in CEM I and CAC based materials
Authors: C. Voegel, M. Giroudon, A. Bertron, C. Patapy, P.L. Matthieu, T. Verdier, ...
Journal: Cement and Concrete Research, Vol. 124, Article 105815 (2019)

Title: Experimental assessment of bio-based earth bricks durability
Authors: A. Laborel-Préneron, M. Giroudon, J.E. Aubert, C. Magniont, P. Faria
Journal: IOP Conference Series: Materials Science and Engineering, Vol. 660 (1), Article 012069 (2019)

Title: Potential of low carbon materials facing biodeterioration in concrete biogas structures
Authors: M. Giroudon, C. Patapy, M. Peyre Lavigne, M. Andriamiandroso, R. Cartier, ...
Journal: Materials and Structures, Vol. 56 (4), Article 80 (2023)

Title: Insights into the local interaction mechanisms between fermenting broken maize and various binder materials for anaerobic digester structures
Authors: M. Giroudon, C. Perez, M.P. Lavigne, B. Erable, C. Lors, C. Patapy, A. Bertron
Journal: Journal of Environmental Management, Vol. 300, Article 113735 (2021)

Jinsheng Wang – Civil Engineering – Best Researcher Award

Professor Jinsheng Wang - Civil Engineering - Best Researcher Award

Beijing Normal University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

🌊 SUMMARY

Professor Jinsheng Wang stands as a pioneering figure in hydrogeology, environmental science, and groundwater pollution control in China. He serves as Professor, Doctoral Supervisor, and Assistant Dean at the College of Water Sciences, Beijing Normal University. As the Head of two national research centers and an expert member of the Ministry of Environmental Protection, his career is marked by multidisciplinary excellence. His leadership in research, consultancy, and higher education has contributed significantly to shaping China’s groundwater management policies. With over two decades of dedicated scholarship and more than 30 landmark publications, Professor Wang's impact extends across academia, government policy, and environmental engineering practices.

🎓 EARLY ACADEMIC PURSUITS

Professor Wang began his academic journey with a Master’s degree in Hydrogeology at Jilin University (1989–1991), later completing his Doctorate in the same field at the same university (1995–1998). His foundational years were shaped by a deep interest in groundwater dynamics, which evolved into a lifelong research commitment. The rigorous training at Jilin equipped him with advanced field knowledge in hydrogeological systems, groundwater modeling, and environmental assessments. His scholarly formation during this period laid the groundwork for his later expertise in numerical simulations, aquifer dynamics, and pollution remediation. He emerged from this phase with a strong academic identity, blending geoscience with environmental applications.

🏢 PROFESSIONAL ENDEAVORS

Currently, Professor Wang holds multiple leadership roles at Beijing Normal University, including Assistant Dean of the College of Water Sciences and Head of two key research centers: the Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education) and the Groundwater Science and Engineering Research Center. He has served as Principal Investigator for national and international research projects sponsored by the Ministry of Science and Technology, Natural Science Foundation of China, and other governmental agencies. His consultancy contributions span emergency environmental response, water conservation planning, and transboundary water studies. He is also a part-time professor at Jilin University, nurturing the next generation of hydrogeologists.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Professor Wang’s primary research focus revolves around groundwater renewability, pollution dynamics, and water resource modeling. His work integrates hydrochemical analysis, isotopic tracing, and numerical simulations to investigate groundwater systems in critical areas like the Beijing Plain and Yellow River Basin. He has contributed to the development of evaluation indicators for groundwater renewability, environmental impact modeling, and groundwater vulnerability assessment. His research supports sustainable water policy, enhances disaster management systems, and informs national groundwater legislation. Notably, his findings on aquifer recharge, pollutant migration, and water-rock interactions have advanced both academic literature and practical groundwater management strategies in China.

🏅 ACCOLADES AND RECOGNITION

Recognized nationally and internationally, Professor Wang has been entrusted with prestigious positions and major projects, reflecting his deep trust in scientific integrity and environmental stewardship. He was selected as a core member of the first Expert Group on Emergency Management under China’s Ministry of Environmental Protection. His scholarly outputs have been published in top-tier journals and government white papers, establishing him as a thought leader. His academic books, such as those co-authored on the Wenchuan Earthquake and groundwater in the Yellow River Basin, have become reference texts. His engineering insights are not only valued in academia but have become tools for policymakers and field engineers alike.

🌍 IMPACT AND INFLUENCE

The influence of Professor Wang extends beyond academic citations into real-world environmental and water policy reforms. His research has directly shaped groundwater protection action plans across China and improved early warning systems for environmental emergencies. He has enhanced technical understanding among stakeholders at the local and national levels, facilitating sustainable water use frameworks. Internationally, his collaborations have led to joint conferences, workshops, and peer-reviewed publications that bridge Chinese hydrogeology with global environmental concerns. Through mentorship, he has cultivated young scholars who now carry forward his mission in groundwater sustainability and environmental resilience.

🧬 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Professor Wang is set to lead new frontiers in climate-resilient water management, groundwater recharge modeling, and integrated environmental systems. His vision includes refining vulnerability assessments using AI, promoting international knowledge exchange, and enhancing community-based water governance. His legacy is rooted in a deep understanding of natural systems and a commitment to advancing science for societal benefit. As an academic architect of China’s groundwater policies and a global contributor to environmental geosciences, Professor Wang’s future endeavors promise to leave a profound mark on the planet’s water future.

PUBLICATION

A level set method for structural topology optimization
Authors: MY Wang, X Wang, D Guo
Journal: Computer Methods in Applied Mechanics and Engineering

Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors
Authors: IK Mellinghoff, MY Wang, I Vivanco, DA Haas-Kogan, S Zhu, EQ Dia, ...
Journal: New England Journal of Medicine

Contamination features and health risk of soil heavy metals in China
Authors: H Chen, Y Teng, S Lu, Y Wang, J Wang
Journal: Science of the Total Environment

State of the climate in 2015
Authors: J Blunden, DS Arndt
Journal: Bulletin of the American Meteorological Society

Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery
Authors: CR Parikh, SG Coca, H Thiessen-Philbrook, MG Shlipak, JL Koyner, ...
Journal: Journal of the American Society of Nephrology

High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on …
Authors: X Fang, W Zhang, Q Meng, J Gao, X Wang, J King, C Song, S Dai, Y Miao
Journal: Earth and Planetary Science Letters

A Multicentre Study of Shigella Diarrhoea in Six Asian Countries: Disease Burden, Clinical Manifestations, and Microbiology
Authors: L Von Seidlein, DR Kim, M Ali, H Lee, XY Wang, VD Thiem, DG Canh, ...
Journal: PLoS Medicine

Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites
Authors: W Meng, X Wang, Z Xiao, J Wang, DB Mitzi, Y Yan
Journal: The Journal of Physical Chemistry Letters

“Color” level sets: a multi-phase method for structural topology optimization with multiple materials
Authors: MY Wang, X Wang
Journal: Computer Methods in Applied Mechanics and Engineering

An inactivated enterovirus 71 vaccine in healthy children
Authors: R Li, L Liu, Z Mo, X Wang, J Xia, Z Liang, Y Zhang, Y Li, Q Mao, J Wang, ...
Journal: New England Journal of Medicine

Rong Chen – Materials Science and Engineering – Women Researcher Award

Rong Chen - Materials Science and Engineering - Women Researcher Award

China university of Geosciences - China

AUTHOR PROFILE

SCOPUS

SUMMARY

Rong Chen is an Associate Professor at China University of Geosciences in Wuhan, recognized for significant contributions to laser manufacturing. Research includes laser welding, laser cladding, and laser 3D printing, focusing on improving joint strength, microstructure manipulation, and composite reinforcement. Over 20 publications have appeared in esteemed journals, addressing advanced manufacturing techniques and material behavior under external fields. With prior experience as a senior research fellow at City University of Hong Kong, the academic background and practical insights position Rong Chen as a leader in applied materials engineering and modern manufacturing technologies.

EDUCATION

A Ph.D. was earned from Huazhong University of Science and Technology in 2018, establishing a strong foundation in materials engineering and laser processing. Postdoctoral experience was gained through a research fellowship at City University of Hong Kong from 2019 to 2020. The academic path has been shaped by multidisciplinary approaches, combining advanced experimental design with theoretical modeling in materials processing. Educational milestones were marked by rigorous training in materials science, welding engineering, and microstructural analysis, leading to a comprehensive skill set relevant to both academic and industrial sectors.

PROFESSIONAL EXPERIENCE

Currently serving as Associate Professor and master’s supervisor at China University of Geosciences, Wuhan. Previously held a senior research fellowship at City University of Hong Kong. Career has focused on laser-based manufacturing processes, supervising graduate-level research, and managing funded scientific projects. Practical roles include leading government-funded initiatives such as the National Natural Science Foundation’s Youth Project and the Wuhan Innovation Foundation. With experience in both academic research and institutional collaboration, the career path demonstrates leadership in cutting-edge manufacturing processes and academic mentorship.

RESEARCH INTEREST

Research concentrates on laser manufacturing technologies, including laser welding, laser cladding, and laser 3D printing. Core areas include interface control, fatigue resistance, magnetic field-assisted welding, and graphene-reinforced composites. Studies also explore intermetallic bonding, joint durability, and microstructural evolution under external influences. Emphasis is placed on sustainable, high-performance fabrication of metal alloys and dissimilar material systems. Advanced characterization techniques are integrated to understand phenomena like crack propagation, crystallographic orientation, and corrosion resistance. Innovations contribute to automotive, aerospace, and structural engineering applications.

AWARD AND HONOR

Recognized through prestigious research funding, including three government-sponsored projects. Achievements include leading roles in the National Natural Science Foundation (Youth Project) and the Wuhan Innovation Foundation. Academic publications in top-tier journals further establish recognition in the global materials science community. Invitations to collaborate and contribute to high-impact research initiatives reflect the professional excellence and impact within laser materials processing and hybrid welding technologies. Contributions are acknowledged by peers and institutions for advancing laser-based joining processes and metal composite developments.

RESEARCH SKILL

Demonstrates expertise in laser-based material processing, magnetic field-assisted welding, and advanced characterization of metal interfaces. Skilled in microstructure-property relationship analysis using modern microscopy and spectroscopic methods. Strong command over experimental design, fatigue testing, corrosion studies, and mechanical property evaluation. Additional competencies include interfacial chemistry analysis, hybrid welding techniques, and metal matrix composite development. Capable of integrating academic theory with practical manufacturing solutions. Offers mentorship in high-level research projects and collaborative innovation with industry partners.

PUBLICATIONS TOP NOTED

Top publications appear in Composite Structures, Materials Science & Engineering A, Journal of Materials Science, and Corrosion Science. Notable studies include interface enhancement using magnetic fields, graphene-reinforced composites, and joint strength optimization. Work in Journal of Materials Processing Technology and Materials Characterization presents advancements in microstructural control and fatigue resistance. Each paper reflects a focused inquiry into material behavior under laser and magnetic influence, contributing significantly to both academic and industrial knowledge in manufacturing and materials design.

Title: Tuning of the mechanical properties of a laser powder bed fused eutectic high entropy alloy Ni30Co30Cr10Fe10Al18W2 through heat treatment
Authors: [Author names not specified in input]
Journal: Materials Science and Engineering A

Title: Multi-Objective Optimization of the Ultrasonic Scalpel Rod and Tip with Improved Performance: Vibration Frequency, Amplitude, and Service Life
Authors: [Author names not specified in input]
Journal: Chinese Journal of Mechanical Engineering (English Edition)

CONCLUSION

Rong Chen stands out as a prominent academic in the field of materials engineering and laser manufacturing. With deep expertise in hybrid welding, external field applications, and composite materials, contributions have shaped current research and practice. A consistent publication record, leadership in funded projects, and a commitment to education and innovation underpin a strong academic presence. Future research aims to integrate sustainable practices with high-performance materials processing, advancing technological development across industries.

Yu Wang – Urban Planning – Best Researcher Award

Yu Wang - Urban Planning - Best Researcher Award

Tianjin University - China

AUTHOR PROFILE

ORCID

SUMMARY

Yu Wang is an Associate Professor at Tianjin University, actively contributing to urban and regional planning with a focus on resilient, healthy, and data-driven urban environments. Extensive experience across academia and applied research has enabled significant contributions to urban governance, green space evaluation, smart city strategies, and sustainable planning. Leadership roles and multiple funded projects highlight a consistent drive for innovative solutions in urban development. The work bridges the gap between theoretical insight and practical urban challenges, benefiting both academia and policy-making.

EDUCATION

Academic qualifications include a PhD in Geography and Planning from the University of Liverpool, a Master’s degree in Urban and Regional Planning from Peking University, and a Bachelor’s in Architecture from Wuhan University. This multidisciplinary academic trajectory supports a holistic understanding of spatial planning, urban sustainability, and architectural principles. Each educational milestone has contributed to shaping a comprehensive and globally informed perspective on city planning, enabling in-depth research and teaching that integrates planning theory, spatial analysis, and socio-environmental design.

PROFESSIONAL EXPERIENCE

Currently Vice Director of the Centre of International Cooperation and Associate Professor at Tianjin University, Yu Wang has held prior roles as Teaching Fellow and Research Associate at institutions including the University of Glasgow. Professional roles span leadership, teaching, international collaboration, and consultancy. Experience includes strategic planning, managing interdisciplinary teams, supervising research projects, and delivering expert consultation to urban development authorities. The academic-industry interface has been a consistent part of this career, enriching both research outputs and urban development practices.

RESEARCH INTEREST

Research interests focus on resilient and healthy urban environments, smart city governance, and data-driven urban planning. Themes such as public space utilization, community-level resilience, and spatial accessibility are central. Ongoing inquiries also explore how built environments influence social capital and well-being. There is a strong emphasis on interdisciplinary methods integrating geospatial analysis, big data, and participatory design. The research direction aims to improve urban sustainability, promote equity in public service distribution, and guide decision-making through empirical, scalable evidence.

AWARD AND HONOR

Recognition includes multiple roles as principal investigator on major government and institution-funded projects. Leadership in international symposiums, invited talks, and editorial contributions affirms the role as a respected voice in urban planning discourse. Notable engagements include keynote sessions in ASEAN-China forums and international planning conferences. Participation in major urban policy consultations and reports for the Blue Book of Urban Community Development also reflects professional trust and domain expertise. This standing contributes to ongoing influence in shaping both research trends and policy agendas.

RESEARCH SKILL

Research competencies span geospatial modeling, big data analysis, remote sensing, GIS, and spatial-temporal analytics. Proficiency includes CA–Markov modeling, mobile phone data analysis, urban heat island prediction, and socio-spatial mapping. Additionally, expertise in interdisciplinary methods allows integration of environmental, demographic, and behavioral datasets into actionable urban policies. Skillset also includes advanced urban simulation, design thinking for planning, and participatory assessment methods. The methodological approach combines quantitative precision with qualitative insight, supporting policy-relevant and academically rigorous research outputs.

PUBLICATIONS TOP NOTED

Publications cover high-impact journals including Buildings, PlosONE, Remote Sensing, Sustainable Cities and Society, and ISPRS. Topics include built environment influence on social capital, urban heat islands, green space accessibility, and spatial segregation. Work is characterized by methodological diversity and thematic relevance to pressing urban challenges. Highlights include studies on smart city technologies, epidemic response infrastructure, and urban renewal. Co-authored reports in national planning bluebooks enhance practical application. The publication record reflects a balance of scholarly rigor and real-world policy engagement.

CONCLUSION

Yu Wang exemplifies a modern academic who bridges theoretical innovation with practical application. The academic career is marked by interdisciplinary integration, leadership in funded research, and a commitment to urban resilience and social equity. As cities face complex challenges from aging populations to climate change, the work stands out for providing grounded, data-informed, and forward-thinking solutions. Continued involvement in national and international platforms ensures ongoing contribution to shaping sustainable and inclusive urban futures.

Joseph Bonello | Bioinformatics | Best Researcher Award

Joseph Bonello | University of Malta | Malta

EARLY ACADEMIC PURSUITS:

Joseph Bonello embarked on his academic journey at the University of Malta, marking the initiation of his scholarly pursuits. Insights into his early academic endeavors, including educational milestones, areas of study, and notable achievements during this formative period, are essential for comprehending his intellectual development.

PROFESSIONAL ENDEAVORS:

Transitioning from academia to the professional realm, Bonello's career unfolded with various professional endeavors. Details about his roles, projects, and collaborations during this phase, particularly those aligned with his academic background, contribute to understanding the practical applications of his knowledge and skills.

CONTRIBUTIONS AND RESEARCH FOCUS:

Bonello's contributions and research focus constitute a critical aspect of his academic and professional identity. Whether through scholarly publications, participation in research projects, or advancements within a specific field, delineating the thematic concentration of his contributions offers a comprehensive understanding of his academic impact.

NOTABLE PUBLICATION

Data Processing Using Edge Computing: A Case Study For The Remote Care Environment.  2022 (1)

AUTHOR PROFILE
Scopus
IMPACT AND INFLUENCE:

Assessing Bonello's impact and influence involves recognizing the broader effects of his work. This encompasses positive outcomes in academia, acknowledgment within his professional network, and any influence he may have had on students, colleagues, or the academic community at large.

ACADEMIC CITATIONS:

An indicator of Bonello's academic influence is reflected in the number of citations his work has garnered. High citation metrics suggest that his research has significantly contributed to the academic discourse, with fellow researchers and scholars referencing his work in their own studies.

LEGACY:

Joseph Bonello's legacy is defined by the lasting impact he leaves at the University of Malta. This may include contributions to the academic environment, mentorship of students, and the establishment of a positive and collaborative culture within his academic sphere.

FUTURE CONTRIBUTIONS:

Looking ahead, Bonello's future contributions may involve continued advancements in his academic and professional pursuits. This could encompass further research, participation in impactful projects, mentorship of emerging scholars, and potentially taking on leadership roles that contribute to the growth and development of the University of Malta.

Kapil Aggarwal | Computer Science and Engineering | Best Researcher Award

Kapil Aggarwal | Koneru Lakshmaiah Education Foundation | India

EARLY ACADEMIC PURSUITS:

Kapil Aggarwal commenced his academic journey at Koneru Lakshmaiah Education Foundation, laying the foundation for his scholarly pursuits. Insight into his early academic pursuits, including academic achievements, areas of study, and notable milestones during this formative period, provides essential context to understand his intellectual development.

PROFESSIONAL ENDEAVORS:

Transitioning from academia to the professional arena, Aggarwal's career unfolded with diverse professional endeavors. Specifics about his roles, projects, and collaborations during this phase, particularly those aligned with his academic background, contribute to comprehending the practical applications of his knowledge and skills.

CONTRIBUTIONS AND RESEARCH FOCUS:

Aggarwal's contributions and research focus form a pivotal aspect of his academic and professional identity. Whether through scholarly publications, participation in research projects, or advancements within a specific field, understanding the thematic concentration of his contributions offers insights into his academic impact.

NOTABLE PUBLICATION

User Environment Tracking and Problem Detection with XALT.  2014 (60)

AUTHOR PROFILE
Google Scholar
IMPACT AND INFLUENCE:

Assessing Aggarwal's impact and influence involves recognizing the broader effects of his work. This encompasses positive outcomes in academia, acknowledgment within his professional network, and any influence he may have had on students, colleagues, or the academic community at large.

ACADEMIC CITATIONS:

An indicator of Aggarwal's academic influence is reflected in the number of citations his work has garnered. High citation metrics suggest that his research has made a significant contribution to the academic discourse, with fellow researchers and scholars referencing his work in their own studies.

LEGACY:

Kapil Aggarwal's legacy is defined by the lasting impact he leaves at Koneru Lakshmaiah Education Foundation. This may include contributions to the academic environment, mentorship of students, and the establishment of a positive and collaborative culture within his academic sphere.

FUTURE CONTRIBUTIONS:

Looking ahead, Aggarwal's future contributions may involve continued advancements in his academic and professional pursuits. This could encompass further research, participation in impactful projects, mentorship of emerging scholars, and potentially taking on leadership roles that contribute to the growth and development of Koneru Lakshmaiah Education Foundation.

Fetih Kefyalew Teshager | Environmental Modeling | Best Researcher Award

Fetih Kefyalew Teshager | Walailak University | Best Researcher Award

EARLY ACADEMIC PURSUITS:

Fetih Kefyalew Teshager embarked on his academic journey at Walailak University, marking the commencement of his scholarly pursuits. Details about his early academic endeavors, including academic achievements, areas of study, and research interests during this foundational period, are pivotal for understanding his intellectual development.

PROFESSIONAL ENDEAVORS:

Transitioning from academia to the professional sphere, Teshager's career unfolded with various professional endeavors. Specifics about his roles, projects, and collaborations during this phase, particularly those aligned with his academic background, provide insights into the practical applications of his knowledge and skills.

CONTRIBUTIONS AND RESEARCH FOCUS:

Teshager's contributions and research focus constitute a crucial aspect of his academic and professional identity. Whether through scholarly publications, participation in research projects, or advancements within a specific field, delineating the thematic concentration of his contributions offers a comprehensive understanding of his academic impact.

AUTHOR PROFILE
Scopus
ORCID
IMPACT AND INFLUENCE:

Assessing Teshager's impact and influence involves recognizing the broader effects of his work. This encompasses positive outcomes in academia, acknowledgment within his professional network, and any influence he may have had on students, colleagues, or the academic community at large.

ACADEMIC CITATIONS:

An indicator of Teshager's academic influence lies in the number of citations his work has garnered. High citation metrics suggest that his research has significantly contributed to the academic discourse, with fellow researchers and scholars referencing his work in their own studies.

LEGACY:

Fetih Kefyalew Teshager's legacy is shaped by the enduring impact he leaves at Walailak University. This may include his contributions to the academic environment, mentorship of students, and the cultivation of a positive and collaborative culture within his academic sphere.

FUTURE CONTRIBUTIONS:

Looking ahead, Teshager's future contributions may involve continued advancements in his academic and professional pursuits. This could encompass further research, participation in impactful projects, mentorship of emerging scholars, and potentially taking on leadership roles that contribute to the growth and development of Walailak University.

You-Yu Dai | Sustainable Development | Best Researcher Award

You-Yu Dai | Shandong Jiaotong University | China

EARLY ACADEMIC PURSUITS:

You-Yu Dai initiated his academic journey at Shandong Jiaotong University, marking the beginning of his scholarly pursuits. Specifics about his early academic pursuits, including educational milestones, areas of interest, and any notable achievements during this formative period, are crucial for understanding his intellectual development.

PROFESSIONAL ENDEAVORS:

Transitioning from academia to the professional realm, Dai's career path unfolded with various professional endeavors. Details regarding his roles, projects, and collaborations during this phase, particularly those relevant to his academic background, contribute to comprehending the practical applications of his knowledge and skills.

CONTRIBUTIONS AND RESEARCH FOCUS:

Dai's contributions and research focus are central to his academic and professional identity. Whether through scholarly publications, participation in research projects, or advancements within a specific field, discerning the thematic concentration of his contributions offers insights into his academic impact.

Low-Carbon Travel Motivation and Constraint: Scales Development and Validation.  2022 (6)

AUTHOR PROFILE
Scopus
ORCID
IMPACT AND INFLUENCE:

Assessing Dai's impact and influence involves recognizing the broader effects of his work. This includes positive outcomes in academia, acknowledgment within his professional network, and any influence he may have had on students, colleagues, or the academic community at large.

ACADEMIC CITATIONS:

An indicator of Dai's academic influence is reflected in the number of citations his work has garnered. High citation metrics suggest that his research has significantly contributed to the academic discourse, with fellow researchers and scholars referencing his work in their own studies.

LEGACY:

You-Yu Dai's legacy is defined by the lasting impact he leaves at Shandong Jiaotong University. This may include his contributions to the academic environment, mentorship of students, and the establishment of a positive and collaborative culture within his academic sphere.

FUTURE CONTRIBUTIONS:

Looking ahead, Dai's future contributions may involve continued advancements in his academic and professional pursuits. This could include further research, participation in impactful projects, mentorship of emerging scholars, and potentially taking on leadership roles that contribute to the growth and development of Shandong Jiaotong University.