Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

CEO | Nur Engineering GmbH | Germany

Saad A. A. Jabir’s research focuses on advancing condition monitoring and structural health assessment within civil engineering, emphasizing innovative sensor-based approaches for real-time evaluation of infrastructure performance. His primary contributions are in the development and application of thick-film ceramic sensors for measuring the strength and stability of civil structures. Jabir’s work demonstrates the potential of these sensors in providing accurate, durable, and responsive measurements that enhance the reliability and safety of infrastructure systems. Through his publications, he explores the integration of sensing technology into civil structures, enabling continuous monitoring that aids in preventive maintenance and early fault detection. His research also intersects materials science and measurement engineering, with attention to improving sensor materials’ thermal and mechanical resilience for field applications. By addressing challenges such as environmental variability and long-term stability of sensor outputs, Jabir contributes to making structural monitoring systems more adaptive and cost-effective. His studies have significant implications for modern smart infrastructure and sustainable construction practices, providing valuable insights into how sensor technologies can be scaled for large-scale engineering projects. His collaborative work reflects an interdisciplinary approach combining electrical engineering, materials research, and civil infrastructure monitoring to create robust diagnostic systems for critical assets. Saad A. A. Jabir’s research output, though concise, holds impactful applications for modern infrastructure management and reliability improvement in engineering systems. 60 Citations 3 Documents 2 h-index

Profile: Scopus
Featured Publications:

Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors. (2013). Measurement: Journal of the International Measurement Confederation.

Zhou Ji | FRP reinforced concrete structure | Best Researcher Award

Zhou Ji | FRP Reinforced Concrete Structure | Best Researcher Award

Associate Professor | Nanjing Forestry University | China

Zhou Ji is a dedicated civil engineering researcher specializing in steel–concrete composite structures and marine or offshore concrete systems, with extensive academic and practical expertise in structural performance and durability. As a doctoral researcher at Guangxi University under Professor Zongping Chen, Zhou has contributed significantly to the understanding of mechanical behaviors, bond characteristics, and seismic performance of advanced composite materials. Zhou has led one Guangxi postgraduate education innovation project and participated in six national and provincial-level research programs focusing on areas such as high-temperature damage assessment, corrosion-resistant marine concrete, and long-lifespan transport hub structures. The research has resulted in 9 SCI-indexed papers and 10 EI-indexed papers as the first author, including publications in high-impact journals like Engineering Structures, Construction and Building Materials, and Journal of Composites for Construction-ASCE. Zhou’s studies on CFRP-steel composite bars in coral sea-sand seawater concrete have provided key insights into bond behavior, structural strength, and post-fire performance, contributing to sustainable marine construction. In addition to academic publications, Zhou has secured four national patents and participated in developing a Guangxi provincial standard. Recognition of excellence includes numerous national and provincial scholarships and awards, such as the Liu Huixian Earthquake Engineering Award and multiple National Scholarship distinctions. The research achievements reflect a deep commitment to advancing composite structural technologies that enhance resilience and sustainability in coastal infrastructure. With a strong foundation in both experimental and numerical analysis, Zhou continues to explore innovative materials and design approaches that address environmental challenges in modern civil engineering. 409 Citations, 16 Documents, and an h-index of 11

Chen, Z., Zhou, J., Jing, C., & Tan, Q. (2021). Mechanical behavior of spiral stirrup reinforced concrete filled square steel tubular columns under compression. Engineering Structures, 226, 111377.

Chen, Z., Xu, W., & Zhou, J. (2022). Mechanical performance of marine concrete filled CFRP–aluminum alloy tube columns under axial compression: Experiment and finite element analysis. Engineering Structures, 272, 114993.

Chen, Z., Li, S., Zhou, J., Xu, R., & Dai, S. (2022). Flexural behavior of GFRP bars reinforced seawater sea sand concrete beams exposed to marine environment: Experimental and numerical study. Construction and Building Materials, 349, 128784.

Chen, Z., Pang, Y., Xu, R., Zhou, J., & Xu, W. (2022). Mechanical performance of ocean concrete-filled circular CFRP–steel tube columns under axial compression. Journal of Constructional Steel Research, 198, 107514.

Zhou, J., Chen, Z., Chen, Y., Song, C., Li, J., & Zhong, M. (2022). Torsional behavior of steel reinforced concrete beam with welded studs: Experimental investigation. Journal of Building Engineering, 48, 103879.

Azunna Sunday | Structural Engineering | Best Researcher Award

Mr. Azunna Sunday | Structural Engineering | Best Researcher Award

Doctoral Researcher | Housing research centre | Malaysia

Mr. Azunna Sunday Ugochukwu has established a strong professional and research background in civil and structural engineering, with notable expertise in sustainable construction materials, structural analysis, and project management. His career includes extensive work in both academic and industrial settings, where he contributed to the design and execution of major infrastructure projects such as residential complexes, university facilities, religious centers, and extensive road networks across Nigeria. At Universiti Putra Malaysia, his research has focused on innovative materials for civil engineering applications, including coconut shell, palm kernel shell, recycled bricks, granite powder, and rubberized geopolymer concrete, leading to multiple publications in reputable international journals. His scholarly contributions span experimental and review studies, addressing compressive strength, stress-strain behavior, and dynamic response of advanced concrete materials, demonstrating his capacity to integrate environmental sustainability with engineering performance. Beyond research, Azunna has engaged in professional workshops on structural modeling, design, and detailing, sharing expertise with institutions such as Federal Polytechnic Bauchi and Abubakar Tafawa Balewa University. His memberships with COREN, the Nigerian Institution of Civil Engineers, and the Nigerian Society of Engineers affirm his commitment to professional standards and development within the engineering community. With experience as an assistant structural engineer, assistant project manager, and doctoral researcher, he has consistently demonstrated versatility in applying theoretical knowledge to practical engineering challenges. His skill set includes advanced structural design software, AutoCAD, drone operation, and engineering instrumentation, underscoring his technological adaptability. The scope of his executed projects—from institutional buildings to healthcare facilities and leisure parks—highlights his versatility and capacity to manage diverse engineering assignments effectively. His growing academic output, combined with practical project delivery, positions him as a significant contributor to advancing civil engineering knowledge and practice. Engr. Azunna Sunday Ugochukwu has achieved 120 Citations, 8 Documents, and 5 h-index.

Featured Publications:

Azunna, S. U. (2019). Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Applied Sciences, 1(4), 342.

Azunna, S. U., Aziz, F. N. A. A., Rashid, R. S. M., & Bakar, N. B. A. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237.

Azunna, S. U., Aziz, F. N. A. A., Cun, P. M., & Elhibir, M. M. O. (2019). Characterization of lightweight cement concrete with partial replacement of coconut shell fine aggregate. SN Applied Sciences, 1(6), 649.

Azunna, S. U., Aziz, F. N. A. A., Bakar, N. A., & Nasir, N. A. M. (2018). Mechanical properties of concrete with coconut shell as partial replacement of aggregates. IOP Conference Series: Materials Science and Engineering, 431(3), 032001.

Azunna, S. U., Aziz, F. N. A. B. A., Al-Ghazali, N. A., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225.

Ming Xie – Structural Engineering – Best Researcher Award

Ming Xie - Structural Engineering - Best Researcher Award

Assistant to the president at Xijing University | China

Ming Xie is a highly accomplished academic and researcher with expertise in civil engineering, specializing in structural analysis and advanced material behavior. With years of dedication to innovative engineering solutions, Ming has contributed significantly to research and education, advancing knowledge in structural performance and damage mechanics. Recognized for producing impactful studies and contributing to the academic community, Ming has developed a reputation for precision and depth in research. Through numerous publications and leadership roles, Ming continues to push the boundaries of civil engineering innovation and inspire emerging scholars in the field.

Professional Profile

ORCID

Education

Ming Xie completed a doctoral degree in civil engineering, demonstrating expertise in structural mechanics and material behavior analysis. The academic journey built a strong foundation in advanced engineering principles and problem-solving strategies. With specialized studies in structural isolation and damage modeling, Ming cultivated a strong research orientation early in their career. This educational background serves as the cornerstone of professional growth, contributing to innovative approaches in engineering research. The academic experience has allowed Ming to seamlessly integrate theoretical knowledge with practical applications, positioning them as a leader in the civil engineering research domain.

Professional Experience

Ming Xie has extensive professional experience, holding a prominent role as a professor and director at a leading academic institution. In this role, Ming has guided academic programs, contributed to curriculum development, and mentored numerous graduate and postgraduate students. With expertise in structural engineering and material science, Ming has established a robust portfolio of impactful research and practical engineering applications. Responsibilities include overseeing research initiatives, leading projects, and fostering collaboration with industry experts. Ming’s leadership and dedication to academic excellence have helped shape innovative teaching strategies and advanced the institution’s engineering research standards.

Research Interest

Ming Xie focuses research on structural mechanics, damage modeling, and material behavior in civil engineering. Areas of expertise include negative Poisson’s ratio structural isolation, ultrasonic rock characterization, and bond-slip constitutive relationships in steel-reinforced concrete. Ming is deeply interested in exploring material properties under varying stress conditions and predicting structural performance. Through experimental studies and analytical modeling, Ming’s research aims to enhance safety and durability in infrastructure. Ming continues to investigate novel engineering solutions that optimize performance and resilience, contributing to the development of sustainable and innovative engineering designs that benefit society.

Award And Honor

Ming Xie has earned recognition for exceptional contributions to civil engineering research and academic leadership. With achievements spanning multiple publications and influential projects, Ming is widely acknowledged for advancing engineering science. Ming’s innovative work has brought attention to structural performance under challenging conditions and materials with unique mechanical properties. Honors reflect a dedication to scholarly excellence and commitment to education and research advancement. These achievements have positioned Ming as a key figure in engineering innovation, inspiring peers and future researchers to embrace creativity, persistence, and technical expertise in solving complex engineering challenges.

Research Skill

Ming Xie demonstrates strong expertise in structural analysis, experimental testing, and advanced simulation techniques. Skilled in developing mathematical models, Ming applies theoretical frameworks to solve practical engineering problems. Proficiency extends to material property characterization, stochastic modeling, and prediction of structural damage evolution. Ming’s research methodology integrates field observations, laboratory experiments, and numerical simulations to deliver robust engineering solutions. A focus on precision and innovation ensures impactful results across multiple research areas. Ming is adept at guiding research teams, analyzing complex data, and producing actionable engineering insights that support infrastructure advancement and academic excellence.

Publications

Ming Xie has authored multiple peer-reviewed research articles in internationally recognized journals, addressing innovative solutions in civil engineering. Key studies include the performance of elliptical negative Poisson’s ratio isolation bearings, ultrasonic property prediction in rock materials, and stochastic modeling of steel-reinforced concrete bond-slip. These publications showcase technical mastery and problem-solving expertise, contributing significantly to advancing engineering research. Ming’s body of work reflects a strong commitment to exploring new material properties and enhancing structural design methodologies. Each paper demonstrates rigorous analysis, offering insights that inspire further exploration and collaboration within the engineering field.

Title: Study on the Performance of Elliptical Negative Poisson’s Ratio Structural Isolation Bearing
Authors: Ming Xie, Xiangdong Wu
Journal: Buildings, 2025

Title: Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes
Authors: Lei Wang, Wen Nie, Ming Xie, Zi Wang, Wei Lu, Dongmei Chen, Weinan Lin, Carlo Rosso
Journal: Shock and Vibration, 2024

Title: Stochastic Damage Constitutive Relationship of Steel‐Reinforced Concrete Bond‐Slip
Authors: Ming Xie, Jiahao Liu, Peng Wang, Zi Wang, Jingjing Zhou, Roberto Nascimbene
Journal: Shock and Vibration, 2021

Conclusion

Ming Xie’s academic journey reflects exceptional dedication to research and teaching in civil engineering. Combining advanced knowledge, leadership, and a visionary approach, Ming continues to make significant contributions through innovative projects and scholarly work. Recognized for precision and originality, Ming plays an influential role in shaping engineering education and promoting research excellence. Publications and leadership roles underscore the impact Ming has made on infrastructure safety and material science. As a researcher and mentor, Ming sets a standard of excellence, advancing both scientific understanding and practical engineering applications for future generations.

Ting-Yu Fan – Structural Engineering – Best Researcher Award

Ting-Yu Fan | Structural Engineering | Best Researcher Award

National Atomic Research Institute - Taiwan

AUTHOR PROFILE

ORCID

SCOPUS

SUMMARY

Ting-Yu Fan is a dedicated engineer and researcher at the National Atomic Research Institute, Taiwan. His expertise spans seismic analysis, soil-structure interaction, and thermal-hydraulic coupling, with a strong focus on nuclear and renewable energy infrastructures. Having contributed to international collaborative projects like DECOVALEX, he brings global perspective and depth to structural safety assessments. Through multidisciplinary research, industry consultancy, and cutting-edge modeling work, Fan continues to make notable advances in the safety and performance of critical energy systems under extreme environmental conditions.

EDUCATION

Ting-Yu Fan completed his Master of Engineering at National Cheng Kung University, Taiwan. His academic foundation centers on structural integrity assessment, seismic performance, and coupled thermal-hydraulic analysis. These areas laid the groundwork for his contributions to national and international research, especially in structural modeling and nuclear energy safety. His education provided the theoretical and technical base to tackle complex challenges in energy systems, particularly those involving fault mechanics, soil-structure interaction, and the behavior of engineered systems under extreme stress conditions.

PROFESSIONAL EXPERIENCE

Currently serving at the National Atomic Research Institute, Fan leads and participates in several government and industry-funded projects on nuclear safety and structural resilience. His prior engagements include critical work on offshore wind turbine support structures and safety cases for spent nuclear fuel disposal. He has contributed to structural evaluations against natural disasters such as typhoons and earthquakes. His professional journey reflects a continuous effort to bridge theoretical modeling with real-world engineering solutions in high-risk and sensitive infrastructures.

RESEARCH INTEREST

Ting-Yu Fan’s research interests span seismic performance evaluation of nuclear infrastructure, structural integrity under multi-hazard conditions, safety case development for spent nuclear fuel disposal, and advanced numerical modeling. He is particularly engaged in soil-structure interaction studies and fault reactivation modeling. His work also includes pioneering research in seismic isolation technologies for small modular reactors and extreme load responses of offshore wind support systems. These themes converge in his quest to enhance the safety, reliability, and sustainability of modern energy infrastructures.

AWARD AND HONOR

Ting-Yu Fan’s selection and participation in the DECOVALEX international research initiative reflect peer recognition of his expertise. His leadership roles in high-stakes government-funded projects further demonstrate his standing in Taiwan’s nuclear and structural engineering communities. His publications and project outcomes have contributed significantly to both academic knowledge and practical advancements in infrastructure safety, earning him a reputation as a trusted expert in the seismic and structural behavior of critical energy systems.

RESEARCH SKILL

Ting-Yu Fan brings advanced skills in seismic analysis, THM modeling, structural integrity evaluation, and numerical simulations. His toolkit includes fault activation modeling, soil-structure interaction analysis, and safety case development for complex nuclear systems. He is proficient in handling multidisciplinary data for integrated assessments of structural and geotechnical systems under environmental stressors. His ability to interpret seismic and thermal data and simulate real-world behaviors under extreme conditions stands as a cornerstone of his research success.

PUBLICATIONS

Title: Modeling the Influence of Soil-Structure-Interaction on Seismic Response of Jacket Substructure for the DTU 10MW Offshore Wind Turbine
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2022)

Title: Strength Analysis for a Jacket-Type Substructure of an Offshore Wind Turbine under Extreme Environment Conditions
Authors: Fan, T.-Y.; Chen, S.-H.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Time-Domain Fatigue Analysis of Multi-Planar Tubular Joints for a Jacket-Type Substructure of Offshore Wind Turbines
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Fatigue Analysis for Jacket-Type Substructure of 5MW Offshore Wind Turbine in Time Domain and Evaluation of Fatigue Damage
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Journal of the Chinese Institute of Civil and Hydraulic Engineering (2018)

Title: Numerical Fatigue Analysis for Jacket-Type Substructure of Offshore Wind Turbines under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2018)

Title: Fatigue Analysis for Jacket-Type Support Structure of Offshore Wind Turbine under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2017)

Title: Reissner's Mixed Variational Theorem-Based Finite Cylindrical Layer Methods for the Three-Dimensional Free Vibration Analysis of Sandwich Circular Hollow Cylinders with an Embedded Functionally Graded Material Layer
Authors: Wu, C.-P.; Fan, T.-Y.; Li, H.-Y.
Journal: Journal of Vibration and Control (2014)

CONCLUSION

Ting-Yu Fan exemplifies a modern researcher committed to public safety and energy resilience. His interdisciplinary approach blends engineering rigor with policy-oriented research outcomes. Through his contributions to nuclear safety, renewable energy systems, and geotechnical modeling, he enhances the scientific foundations for infrastructure design in seismically active and environmentally challenging regions. His work continues to impact engineering practices, regulatory standards, and academic collaboration, positioning him as a key contributor to the evolving field of energy systems engineering.

Milan Sapieta | Structural Engineering | Best Researcher Award

 Mr. Milan Sapieta| Structural Engineering | Best Researcher Award

researcher at UNIZA in Slovakia

Milan Sapieta is a dedicated professional in [specific field, e.g., engineering, technology], recognized for his contributions to [specific areas, e.g., software development, system engineering]. With a strong background in both academic research and practical application, he is committed to advancing technology through innovative solutions. Milan’s work has had a notable impact in [mention relevant industry or sector, e.g., telecommunications, renewable energy].

Professional Profiles:

Strengths for the Award

  • Milan Sapieta stands out as a strong candidate for the Research for Community Impact Award and the Best Researcher Award due to his extensive research contributions and practical applications in engineering and materials science. His work in flange fatigue life calculation, stress analysis of battery containers, and mechanical properties of spur involute gearing demonstrates a commitment to addressing real-world challenges, particularly in areas that impact public safety and infrastructure.His recent publications in high-impact journals, such as Applied Sciences and Materials, further solidify his reputation as a leading researcher. Notably, the article on the design and implementation of a low-cost torque sensor for manipulators highlights his innovative approach to enhancing technological solutions that can benefit various industries, including robotics and automation. The ability to publish in reputable journals indexed in SCOPUS and the Web of Science indicates the significance and quality of his research.Milan’s contributions to studies on load measurement of cervical vertebrae during car travel exemplify his dedication to public health and safety, directly impacting vehicle safety standards and ergonomics. His ability to collaborate with co-authors on multidisciplinary research also illustrates his teamwork and communication skills, essential for impactful research.

Areas for Improvement

  • Despite his impressive achievements, Milan could further enhance his candidacy by increasing his outreach efforts and community engagement related to his research. Developing initiatives to share findings with the public, industry stakeholders, or educational institutions could amplify the societal impact of his work. This could include workshops, seminars, or educational programs aimed at demonstrating the real-world applications of his research in engineering and materials science.Additionally, pursuing interdisciplinary collaborations with professionals from different fields could provide fresh perspectives and enhance the relevance of his research. Engaging with policymakers or industry leaders to translate his findings into practical applications could further elevate his profile for the Research for Community Impact Award

Education:

  • Milan Sapieta holds a Bachelor’s degree in [specific field, e.g., Electrical Engineering, Computer Science, or a related discipline] from [University Name], where he developed foundational skills in [mention core subjects, e.g., circuit design, software development]. He further advanced his education with a Master’s degree in [specific field] from [University Name], focusing on [specific areas of specialization or research, e.g., digital systems, machine learning]. Milan’s academic achievements provided him with a solid grounding in both theoretical knowledge and practical applications in his field.

Professionals Experience:

  • Milan has accumulated over [number] years of experience in [specific field or industry, e.g., technology, engineering, or research]. He currently serves as [current position, e.g., Software Engineer, Research Scientist] at [Company/Institution Name], where he is responsible for [mention specific responsibilities, e.g., developing innovative solutions, leading research projects, or designing new systems]. Previously, he held roles at [mention previous companies or institutions], where he contributed to significant projects involving [mention relevant technologies or processes, e.g., software development, system optimization].

Skills:

  • Milan possesses a diverse skill set, including expertise in [mention specific skills, e.g., programming languages, software tools, system design]. He is proficient in using [specific software or tools, e.g., MATLAB, Python, AutoCAD], and has strong analytical and problem-solving abilities. His collaborative skills and experience in project management enhance his ability to work effectively in multidisciplinary teams.

Research Focus:

  • Milan’s research interests are primarily focused on [mention key areas, e.g., software engineering, system optimization, machine learning]. He aims to address challenges in [specific challenges, e.g., improving system efficiency, enhancing user experience], and his work seeks to develop innovative solutions that contribute to the advancement of [mention relevant industry or technology, e.g., smart systems, renewable energy]. Through his research, Milan aspires to make meaningful contributions to the ongoing evolution of [specific field or sector].

Publications :

  • “Probabilistic Analysis of Orbital Characteristics of Rotary Systems with Centrally and Off-Center Mounted Unbalanced Disks”
    • Journal: Applied Sciences
    • Publication Date: September 30, 2024
  • “Probabilistic Analysis of Critical Speed Values of a Rotating Machine as a Function of the Change of Dynamic Parameters”
    • Journal: Sensors
    • Publication Date: July 4, 2024
  • “The Impact of Internal Structure Changes on the Damping Properties of 3D-Printed Composite Material”
    • Journal: Applied Sciences
    • Publication Date: June 29, 2024
  • “Design and Implementation of a Low-Cost Torque Sensor for Manipulators”
    • Journal: Applied Sciences
    • Publication Date: August 18, 2023
  • “Investigation of the Mechanical Properties of Spur Involute Gearing by Infrared Thermography”
    • Journal: Applied Sciences
    • Publication Date: May 12, 2023
  • “The Impact of Excitation Periods on the Outcome of Lock-In Thermography”
    • Journal: Materials
    • Publication Date: March 30, 2023

Conclusion:

  • Milan Sapieta is highly suitable for both the Research for Community Impact Award and the Best Researcher Award due to his significant contributions to engineering research and its practical applications. His work not only advances the field of materials science but also directly impacts safety and efficiency in real-world scenarios. By expanding his community outreach and interdisciplinary collaborations, he can further strengthen his influence and enhance the broader impact of his research, making him a formidable candidate for these awards.

Hanine Merzougui – Structural Health Monitoring – Best Researcher Award

Hanine Merzougui - Structural Health Monitoring - Best Researcher Award

Batna 2 University - Algeria

AUTHOR PROFILE

ORCID

AI ENGINEER & DATA ANALYST 🤖

Hanine Merzougui is a highly motivated AI Engineer and Data Analyst from Batna 2 University, with expertise in a variety of programming languages including Python, R, Java, and C++. Her research focuses on the application of artificial intelligence technologies such as Machine Learning, Deep Learning, Natural Language Processing, and Computer Vision to enhance human life. Hanine is fluent in Arabic, French, and English, and is passionate about creating innovative AI tools, like the GptStoryTeller, which showcases her commitment to advancing technology for societal benefits.

TEACHING EXPERIENCE 📚

As a teaching assistant at Batna 2 University, Hanine has played a pivotal role in educating future engineers and computer scientists. She has been responsible for conducting lab sessions, guiding projects, and evaluating practical work for both Bachelor's seniors and sophomore engineers. Her dedication to mentoring students highlights her commitment to fostering an engaging and supportive learning environment. Hanine's hands-on approach and her ability to simplify complex concepts have made her a valuable asset to her department.

SOFTWARE DEVELOPMENT 💻

During her tenure as a software developer at Middle School Bensaadallah Belkhir, Hanine developed a management software that streamlined student activity tracking. This project not only honed her programming skills but also gave her insight into practical applications of technology in education. Her proficiency in Java and understanding of user needs allowed her to create a tool that significantly improved the management of student activities.

RESEARCH AND INNOVATION 🔍

Hanine’s research is centered around the digitalization and automation of approval processes for durum wheat grain quality in Algeria, utilizing computer vision and machine learning. Her thesis project focused on enhancing quality control through innovative AI applications, demonstrating her ability to combine theoretical knowledge with practical solutions. By publishing her findings, Hanine contributes to the academic community and the broader agricultural sector, paving the way for advancements in food quality assessment.

CONFERENCES & SEMINARS 🎤

Hanine actively participates in conferences and seminars, sharing her research and insights with peers and experts. Her presentations on the use of deep learning approaches for durum wheat seed certification and quality approval have garnered attention in the academic community. By engaging with fellow researchers, Hanine not only disseminates knowledge but also fosters collaborations that can lead to groundbreaking advancements in her field.

HONORS AND CERTIFICATIONS 🏆

Recognized for her contributions, Hanine has received several accolades, including a Startup Certificate Patent for her master's thesis and a Certificate of Appreciation from the GDG Batna Hackathon for developing an innovative AI storytelling tool. Additionally, she earned the Google Data Analytics Professional Certificate, showcasing her skills in data preparation, analysis, and visualization. These achievements reflect her commitment to continuous learning and excellence in her field.

DIGITAL SKILLS & COMPETENCIES 💡

Hanine possesses a robust set of digital skills, including proficiency in machine learning frameworks such as TensorFlow and Keras, along with expertise in data management using SQL and MySQL. Her programming background encompasses a variety of languages, and she has a strong foundation in statistical analysis and data visualization. Hanine’s ability to leverage technology effectively positions her as a leading figure in the field of AI and data analytics.

NOTABLE PUBLICATION

Title: Skin Cancer Diagnosis Using VGG16 and Transfer Learning: Analyzing the Effects of Data Quality over Quantity on Model Efficiency
Authors: [Author names not provided in the given information]
Year: 2024

Matei Elena Sogorescu – Structural Health Monitoring – Best Researcher Award

Matei Elena Sogorescu - Structural Health Monitoring - Best Researcher Award

Ovidius University from Constanta - Romania

AUTHOR PROFILE

SCOPUS

PROFESSIONAL RESEARCHER IN CELL BIOLOGY

Matei Elena Sogorescu, a dedicated Scientific Researcher III and PhD biologist, has been at the forefront of cell biology research since December 2018. Her expertise encompasses a range of laboratory techniques, including the development of human cancer primary cell cultures and cancer cell lines. She specializes in studying cell death through various staining and microscopy techniques, providing crucial insights into cancer and normal cell behaviors.

EXPERT IN FLOW CYTOMETRY AND BIOMARKER ANALYSIS

Elena Sogorescu’s work heavily involves flow cytometry, where she meticulously analyzes biomarkers related to cell apoptosis, oxidative stress, and cell cycle dynamics. Her research extends to evaluating biomarkers in leukemia, lymphomas, and preterm newborns with morbidities. She also studies biomarkers involved in cell adhesion and apoptosis in prostate tissues, contributing to a deeper understanding of cancer and immune system functions.

INNOVATOR IN CANCER RESEARCH AND BIOMARKER STUDIES

Her innovative research includes examining the impact of Usnea barbata extracts on oral cancer cell lines and exploring metabolic sensitivity thresholds in prostate hyperplasia. By leveraging advanced flow cytometry techniques, she assesses cell apoptosis, ROS levels, and DNA damage, contributing to potential therapeutic advancements and better understanding of cancer treatment mechanisms.

CONTRIBUTOR TO NATIONAL AND INTERNATIONAL RESEARCH PROJECTS

Matei Elena Sogorescu has significantly contributed to the field through the development of both national and international research projects focused on malignancies. Her involvement in diverse scientific activities, including management courses and specialization stages across various countries, reflects her commitment to advancing her field and applying cutting-edge methods in her research.

AUTHOR OF IMPACTFUL SCIENTIFIC PAPERS

Elena Sogorescu has published influential research papers in high-impact journals such as the International Journal of Molecular Sciences and J. Pers. Med. Her work on molecular mechanisms in cancer and inflammation, including studies on microRNAs and tumor-infiltrating lymphocytes, has made significant contributions to our understanding of disease mechanisms and potential therapeutic targets.

SPECIALIZATION IN ADVANCED SCIENTIFIC TECHNIQUES

Her extensive specialization includes various techniques such as sperm cryopreservation and the impact of photoperiodic treatments on livestock, showcasing her broad expertise in biological and agricultural sciences. This specialization enhances her ability to conduct comprehensive research across different areas of biology and medicine.

DEDICATED TO SCIENTIFIC ADVANCEMENTS AND EDUCATION

Beyond her research, Elena Sogorescu is committed to education and scientific dissemination. Her participation in numerous courses, workshops, and work visits underscores her dedication to staying at the forefront of scientific knowledge and contributing to the broader scientific community.

NOTABLE PUBLICATION

Tissue and Circulating MicroRNA-31, MicroRNA-200b, and MicroRNA-200c Reflects Disease Activity in Crohn’s Disease Patients: Results from the BIOMIR Study
Authors: C. Tocia, A. Dumitru, B. Mateescu, E. Dumitru, L. Alexandrescu
Journal: Journal of Gastrointestinal and Liver Diseases
Year: 2023

PD-L1, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes (TILs) Expression Profiles in Melanoma Tumor Microenvironment Cells
Authors: B.M. Caraban, E. Matei, G.C. Cozaru, C.I. Orasanu, A.-A. Nicolau
Journal: Journal of Personalized Medicine
Year: 2023

ROS-Induced DNA-Damage and Autophagy in Oral Squamous Cell Carcinoma by Usnea barbata Oil Extract—An In Vitro Study
Authors: V. Popovici, A.M. Musuc, E. Matei, D. Lupuliasa, C.E. Gîrd
Journal: International Journal of Molecular Sciences
Year: 2022

In Vitro Anticancer Activity of Mucoadhesive Oral Films Loaded with Usnea barbata (L.) F. H. Wigg Dry Acetone Extract, with Potential Applications in Oral Squamous Cell Carcinoma Complementary Therapy
Authors: V. Popovici, E. Matei, G.C. Cozaru, M. Aschie, V. Badea
Journal: Antioxidants
Year: 2022

Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC
Authors: V. Popovici, E. Matei, G.C. Cozaru, E. Dumitru, V. Badea
Journal: Antioxidants
Year: 2022

Micheal Sakr – Structural Health Monitoring – Best Researcher Award

Micheal Sakr - Structural Health Monitoring - Best Researcher Award

Western University of Ontario - Canada

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Micheal Sakr commenced his academic journey with a Bachelor of Science in Civil Engineering from the University of Balamand, Lebanon, where he achieved outstanding academic performance, earning a cumulative average of 90.06% and graduating with distinction. He further enriched his academic background with graduate coursework in Structural Engineering at the University of Western Ontario, Canada, where he is currently pursuing a Ph.D. under the supervision of Dr. Ayan Sadhu. His research focus revolves around Digital Twins for Structural Health Monitoring, showcasing his commitment to advancing the field of structural engineering.

PROFESSIONAL ENDEAVORS

Throughout his academic career, Micheal has demonstrated versatility and excellence, serving as a Teaching Assistant at Western University, where he contributed to courses such as Engineering Statics, Advanced Structural Dynamics, and Professional Communication for Engineers. Additionally, his experience as an AutoCAD Drafter equipped him with practical skills in handling structural detailing and drawings for civil engineering projects.

CONTRIBUTIONS AND RESEARCH FOCUS

Micheal's research interests center on Structural Health Monitoring, a field critical for ensuring the safety and integrity of civil infrastructure. His work involves utilizing specialized equipment for structural testing, such as displacement sensors, accelerometers, and acoustic emission sensors, to assess the strength and response of various structural elements. By actively participating in research projects and mentoring initiatives, Micheal demonstrates his dedication to advancing knowledge and addressing real-world engineering challenges.

IMPACT AND INFLUENCE

Micheal's contributions to the field of Structural Health Monitoring have the potential to make a significant impact on civil engineering practices, particularly in ensuring the safety and resilience of infrastructure systems. His involvement in community aid groups and volunteer activities further underscores his commitment to making a positive difference in society.

ACADEMIC CITES

Micheal's academic achievements, including his outstanding performance in coursework and research, have positioned him as a promising scholar in the field of structural engineering. His contributions to research projects and mentorship activities reflect his dedication to academic excellence and professional development.

LEGACY AND FUTURE CONTRIBUTIONS

As Micheal continues to pursue his Ph.D. and engage in research endeavors, he is poised to leave a lasting legacy in the field of Structural Health Monitoring. His passion for innovation, coupled with his strong academic foundation and practical skills, sets the stage for future contributions that will advance the safety, sustainability, and resilience of civil infrastructure worldwide.

NOTABLE PUBLICATION

Visualization of structural health monitoring information using Internet-of-Things integrated with building information modeling.  2023 (4)