Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

CEO | Nur Engineering GmbH | Germany

Saad A. A. Jabir’s research focuses on advancing condition monitoring and structural health assessment within civil engineering, emphasizing innovative sensor-based approaches for real-time evaluation of infrastructure performance. His primary contributions are in the development and application of thick-film ceramic sensors for measuring the strength and stability of civil structures. Jabir’s work demonstrates the potential of these sensors in providing accurate, durable, and responsive measurements that enhance the reliability and safety of infrastructure systems. Through his publications, he explores the integration of sensing technology into civil structures, enabling continuous monitoring that aids in preventive maintenance and early fault detection. His research also intersects materials science and measurement engineering, with attention to improving sensor materials’ thermal and mechanical resilience for field applications. By addressing challenges such as environmental variability and long-term stability of sensor outputs, Jabir contributes to making structural monitoring systems more adaptive and cost-effective. His studies have significant implications for modern smart infrastructure and sustainable construction practices, providing valuable insights into how sensor technologies can be scaled for large-scale engineering projects. His collaborative work reflects an interdisciplinary approach combining electrical engineering, materials research, and civil infrastructure monitoring to create robust diagnostic systems for critical assets. Saad A. A. Jabir’s research output, though concise, holds impactful applications for modern infrastructure management and reliability improvement in engineering systems. 60 Citations 3 Documents 2 h-index

Profile: Scopus
Featured Publications:

Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors. (2013). Measurement: Journal of the International Measurement Confederation.

Azunna Sunday | Structural Engineering | Best Researcher Award

Mr. Azunna Sunday | Structural Engineering | Best Researcher Award

Doctoral Researcher | Housing research centre | Malaysia

Mr. Azunna Sunday Ugochukwu has established a strong professional and research background in civil and structural engineering, with notable expertise in sustainable construction materials, structural analysis, and project management. His career includes extensive work in both academic and industrial settings, where he contributed to the design and execution of major infrastructure projects such as residential complexes, university facilities, religious centers, and extensive road networks across Nigeria. At Universiti Putra Malaysia, his research has focused on innovative materials for civil engineering applications, including coconut shell, palm kernel shell, recycled bricks, granite powder, and rubberized geopolymer concrete, leading to multiple publications in reputable international journals. His scholarly contributions span experimental and review studies, addressing compressive strength, stress-strain behavior, and dynamic response of advanced concrete materials, demonstrating his capacity to integrate environmental sustainability with engineering performance. Beyond research, Azunna has engaged in professional workshops on structural modeling, design, and detailing, sharing expertise with institutions such as Federal Polytechnic Bauchi and Abubakar Tafawa Balewa University. His memberships with COREN, the Nigerian Institution of Civil Engineers, and the Nigerian Society of Engineers affirm his commitment to professional standards and development within the engineering community. With experience as an assistant structural engineer, assistant project manager, and doctoral researcher, he has consistently demonstrated versatility in applying theoretical knowledge to practical engineering challenges. His skill set includes advanced structural design software, AutoCAD, drone operation, and engineering instrumentation, underscoring his technological adaptability. The scope of his executed projects—from institutional buildings to healthcare facilities and leisure parks—highlights his versatility and capacity to manage diverse engineering assignments effectively. His growing academic output, combined with practical project delivery, positions him as a significant contributor to advancing civil engineering knowledge and practice. Engr. Azunna Sunday Ugochukwu has achieved 120 Citations, 8 Documents, and 5 h-index.

Featured Publications:

Azunna, S. U. (2019). Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Applied Sciences, 1(4), 342.

Azunna, S. U., Aziz, F. N. A. A., Rashid, R. S. M., & Bakar, N. B. A. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237.

Azunna, S. U., Aziz, F. N. A. A., Cun, P. M., & Elhibir, M. M. O. (2019). Characterization of lightweight cement concrete with partial replacement of coconut shell fine aggregate. SN Applied Sciences, 1(6), 649.

Azunna, S. U., Aziz, F. N. A. A., Bakar, N. A., & Nasir, N. A. M. (2018). Mechanical properties of concrete with coconut shell as partial replacement of aggregates. IOP Conference Series: Materials Science and Engineering, 431(3), 032001.

Azunna, S. U., Aziz, F. N. A. B. A., Al-Ghazali, N. A., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225.

Ming Xie – Structural Engineering – Best Researcher Award

Ming Xie - Structural Engineering - Best Researcher Award

Assistant to the president at Xijing University | China

Ming Xie is a highly accomplished academic and researcher with expertise in civil engineering, specializing in structural analysis and advanced material behavior. With years of dedication to innovative engineering solutions, Ming has contributed significantly to research and education, advancing knowledge in structural performance and damage mechanics. Recognized for producing impactful studies and contributing to the academic community, Ming has developed a reputation for precision and depth in research. Through numerous publications and leadership roles, Ming continues to push the boundaries of civil engineering innovation and inspire emerging scholars in the field.

Professional Profile

ORCID

Education

Ming Xie completed a doctoral degree in civil engineering, demonstrating expertise in structural mechanics and material behavior analysis. The academic journey built a strong foundation in advanced engineering principles and problem-solving strategies. With specialized studies in structural isolation and damage modeling, Ming cultivated a strong research orientation early in their career. This educational background serves as the cornerstone of professional growth, contributing to innovative approaches in engineering research. The academic experience has allowed Ming to seamlessly integrate theoretical knowledge with practical applications, positioning them as a leader in the civil engineering research domain.

Professional Experience

Ming Xie has extensive professional experience, holding a prominent role as a professor and director at a leading academic institution. In this role, Ming has guided academic programs, contributed to curriculum development, and mentored numerous graduate and postgraduate students. With expertise in structural engineering and material science, Ming has established a robust portfolio of impactful research and practical engineering applications. Responsibilities include overseeing research initiatives, leading projects, and fostering collaboration with industry experts. Ming’s leadership and dedication to academic excellence have helped shape innovative teaching strategies and advanced the institution’s engineering research standards.

Research Interest

Ming Xie focuses research on structural mechanics, damage modeling, and material behavior in civil engineering. Areas of expertise include negative Poisson’s ratio structural isolation, ultrasonic rock characterization, and bond-slip constitutive relationships in steel-reinforced concrete. Ming is deeply interested in exploring material properties under varying stress conditions and predicting structural performance. Through experimental studies and analytical modeling, Ming’s research aims to enhance safety and durability in infrastructure. Ming continues to investigate novel engineering solutions that optimize performance and resilience, contributing to the development of sustainable and innovative engineering designs that benefit society.

Award And Honor

Ming Xie has earned recognition for exceptional contributions to civil engineering research and academic leadership. With achievements spanning multiple publications and influential projects, Ming is widely acknowledged for advancing engineering science. Ming’s innovative work has brought attention to structural performance under challenging conditions and materials with unique mechanical properties. Honors reflect a dedication to scholarly excellence and commitment to education and research advancement. These achievements have positioned Ming as a key figure in engineering innovation, inspiring peers and future researchers to embrace creativity, persistence, and technical expertise in solving complex engineering challenges.

Research Skill

Ming Xie demonstrates strong expertise in structural analysis, experimental testing, and advanced simulation techniques. Skilled in developing mathematical models, Ming applies theoretical frameworks to solve practical engineering problems. Proficiency extends to material property characterization, stochastic modeling, and prediction of structural damage evolution. Ming’s research methodology integrates field observations, laboratory experiments, and numerical simulations to deliver robust engineering solutions. A focus on precision and innovation ensures impactful results across multiple research areas. Ming is adept at guiding research teams, analyzing complex data, and producing actionable engineering insights that support infrastructure advancement and academic excellence.

Publications

Ming Xie has authored multiple peer-reviewed research articles in internationally recognized journals, addressing innovative solutions in civil engineering. Key studies include the performance of elliptical negative Poisson’s ratio isolation bearings, ultrasonic property prediction in rock materials, and stochastic modeling of steel-reinforced concrete bond-slip. These publications showcase technical mastery and problem-solving expertise, contributing significantly to advancing engineering research. Ming’s body of work reflects a strong commitment to exploring new material properties and enhancing structural design methodologies. Each paper demonstrates rigorous analysis, offering insights that inspire further exploration and collaboration within the engineering field.

Title: Study on the Performance of Elliptical Negative Poisson’s Ratio Structural Isolation Bearing
Authors: Ming Xie, Xiangdong Wu
Journal: Buildings, 2025

Title: Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes
Authors: Lei Wang, Wen Nie, Ming Xie, Zi Wang, Wei Lu, Dongmei Chen, Weinan Lin, Carlo Rosso
Journal: Shock and Vibration, 2024

Title: Stochastic Damage Constitutive Relationship of Steel‐Reinforced Concrete Bond‐Slip
Authors: Ming Xie, Jiahao Liu, Peng Wang, Zi Wang, Jingjing Zhou, Roberto Nascimbene
Journal: Shock and Vibration, 2021

Conclusion

Ming Xie’s academic journey reflects exceptional dedication to research and teaching in civil engineering. Combining advanced knowledge, leadership, and a visionary approach, Ming continues to make significant contributions through innovative projects and scholarly work. Recognized for precision and originality, Ming plays an influential role in shaping engineering education and promoting research excellence. Publications and leadership roles underscore the impact Ming has made on infrastructure safety and material science. As a researcher and mentor, Ming sets a standard of excellence, advancing both scientific understanding and practical engineering applications for future generations.

Li Li – Arch Structure – Best Researcher Award

Li Li | Arch Structure | Best Researcher Award

Lecturer at East China Jiaotong University, China

Li Li is a dedicated academic in the field of Civil Engineering with a strong commitment to education and research. Currently serving as a Lecturer at the School of Civil Engineering and Architecture, East China Jiaotong University, Li Li demonstrates a consistent focus on infrastructure and sustainability. The academic journey reflects a blend of technical expertise and practical experience. Contributions to the department and active involvement in academic development underscore a professional with both depth and versatility in engineering education.

Professional Profile

SCOPUS

Education

Academic qualifications include a Bachelor’s degree in Water Supply and Drainage Science and Engineering, followed by a Master’s degree in Road and Railway Engineering, both obtained from East China Jiaotong University. The combination of water systems and transportation engineering forms a robust foundation for interdisciplinary civil engineering research. The educational path showcases an early commitment to tackling infrastructure-related challenges, setting the stage for advanced academic and practical contributions in the civil engineering domain.

Professional Experience

Li Li has been serving as a Lecturer at East China Jiaotong University since 2010, contributing significantly to teaching and curriculum development in the School of Civil Engineering and Architecture. Additionally, in 2018, Li Li held a visiting fellowship at the University of South Australia, an opportunity that broadened the international perspective and enriched academic collaborations. This dual exposure has fostered a deeper understanding of global civil engineering practices and enhanced instructional methodologies for undergraduate and postgraduate students.

Research Interest

The primary research interests lie in civil infrastructure systems, including water supply, drainage engineering, and transportation structures. Interdisciplinary study between urban planning and structural engineering also shapes ongoing investigations. Emphasis is placed on improving design efficiency, sustainable construction methods, and the integration of modern technologies in railway and road engineering. A commitment to solving real-world infrastructure problems drives the motivation behind research endeavors in both local and international contexts.

Award And Honor

Achievements include recognition through participation in academic exchange programs, such as the visiting fellowship at the University of South Australia. This opportunity highlights international acknowledgment of academic potential and professional capabilities. Additionally, continuous contributions to university-level academic progress and mentorship demonstrate a strong commitment to academic excellence. While formal awards are not listed, the academic career reflects respect and value within institutional frameworks and among peer scholars in civil engineering.

Research Skill

Li Li demonstrates robust skills in infrastructure assessment, transportation modeling, and drainage system design. Proficiency in applying theoretical principles to practical projects enhances both teaching and research. Collaborative capabilities are evident through international engagement and interdisciplinary teamwork. A methodological approach to problem-solving, along with the application of advanced civil engineering tools and practices, forms the core of the research skill set. This includes hands-on experience with structural analysis software and field project integration.

Publications

While the document does not list specific publications, academic involvement suggests contributions to teaching materials, internal research reports, and potentially co-authored papers in the area of civil and transportation engineering. Li Li’s role as a Lecturer and visiting researcher likely included scholarly dissemination in seminars or institutional journals. The emphasis is on practical application of research findings and enhancement of engineering practices through academic channels, aligned with the goals of sustainable infrastructure development.

Title: Lateral-Torsional Buckling of Parabolic Arches in Cartesian Coordinate System

Journal: Structures (2025)

CONCLUSION

Li Li exemplifies a committed academic professional dedicated to civil engineering education and research. Through consistent service at East China Jiaotong University and international exposure, a balance between theoretical knowledge and practical implementation has been achieved. The research and teaching trajectory reflect an educator focused on shaping future engineers while advancing infrastructure development through scholarly work. Continued engagement in research collaborations and curriculum innovation further strengthens this academic profile.

Xupei Yao – Structural Engineering – Best Researcher Award

Xupei Yao - Structural Engineering - Best Researcher Award

Zhengzhou University - China

AUTHOR PROFILE

SCOPUS

🧬 SUMMARY 

Xupei Yao stands as a dynamic figure in civil engineering, with particular expertise in advanced cementitious composites, nanomaterials, and sustainable construction. The academic trajectory encompasses a Ph.D. from Monash University, where groundbreaking research set the stage for a prolific career. With international collaborations and multidisciplinary integration, work has centered around solving complex engineering problems through innovative material design and nanotechnology. Publications reflect an evolving exploration into material properties, durability enhancement, and environmental performance, particularly within the context of climate-conscious infrastructure. Contributions not only enhance fundamental knowledge but also offer transformative insights into construction materials capable of performing under harsh environmental stressors. By merging simulation, experimentation, and field-based insights, the research trajectory continues to address challenges in structural durability, energy efficiency, and environmental impact. Recognition as a leading young researcher in China further underscores a growing influence in the global academic and engineering community.

🎓 EARLY ACADEMIC PURSUITS

Academic development began with a Bachelor of Civil Engineering under a prestigious 2+2 program jointly organized by Monash University and Central South University. This foundational training offered a robust understanding of both Western and Eastern engineering perspectives. The undergraduate years were marked by excellence, achieving First Class Honors and initiating a fascination with construction materials and their microstructural behavior. Building on this early interest, a Ph.D. in Civil Engineering at Monash University followed, with research emphasizing advanced composites, graphene integration, and nanoscale interactions in cement systems. A strong focus was placed on interface mechanics, reinforcing mechanisms, and multi-scale modeling, which laid the groundwork for future investigations. Graduate studies were supported by esteemed scholarships including the Monash Graduate Scholarship and International Postgraduate Research Scholarship. These formative years reflect a consistent drive toward technical mastery, research innovation, and academic distinction, preparing the foundation for an internationally recognized research portfolio.

🏗️ PROFESSIONAL ENDEAVORS IN ENGINEERING

The professional journey features key roles across leading institutions. Currently serving as Associate Professor at the School of Water Conservancy and Transportation, Zhengzhou University, responsibilities encompass research leadership, mentoring, and curriculum development. Prior to this, tenure at Monash University included multiple capacities—ranging from Research Officer to key contributor within the ARC Nanocomm Hub. This phase nurtured interdisciplinary collaborations and facilitated engagement with nanotechnology applications in construction. Participation in international conferences and peer-reviewed forums reinforced a reputation for precision, innovation, and analytical rigor. Projects undertaken span from fiber-reinforced composites to advanced thermal regulation materials, showcasing a robust capacity to translate theory into practical applications. Whether through lab-based experiments, numerical simulation, or policy-aligned research, the career consistently integrates academic depth with societal relevance. The professional arc reflects a fusion of innovation, education, and global engagement, establishing a firm position in the field of advanced civil infrastructure materials.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Central research themes include high-performance cementitious composites, nanomaterial enhancement, graphene-based fiber reinforcement, radiative cooling materials, and image-based microstructural analysis. Studies such as those on graphene oxide's interaction with cement mortar and hybrid effects in fiber-reinforced mortars have contributed significantly to understanding material durability and strength. A novel integration of coarse-grained molecular dynamics simulations has enabled deeper analysis of polymers at nanoscale, aiding the development of next-generation materials. Recent explorations into passive radiative cooling using nanophotonic structures signal an expansion toward energy-efficient and climate-responsive building systems. Research has also introduced deep learning tools to interpret cement hydration, exemplifying a multidisciplinary approach that blends materials science, computer vision, and sustainability. These contributions offer both academic significance and practical application, providing durable, intelligent, and green solutions for civil infrastructure. The impact resonates through the built environment, where every innovation contributes to safer, smarter, and more sustainable development.

🏅 ACCOLADES AND RECOGNITION

Recognition spans across national and international domains. In China, status as a recipient of the National Overseas Young Talents Award and the Outstanding Young Talents of Zhongyuan has reinforced standing as a leading figure in materials engineering. Prestigious fellowships such as the Monash Graduate Scholarship and the Monash International Postgraduate Research Scholarship supported early scholarly achievements and recognized the high potential for impactful research. During the doctoral phase, the Graduate Research Completion Award further validated academic excellence and research timeliness. Invitations to present at world-class forums such as the World Engineers Convention and the Australian Industrial Hemp Conference showcase peer recognition. Authorship in high-impact journals like Construction and Building Materials, Materials & Design, and Journal of Applied Polymer Science testifies to the rigor and innovation of contributions. These accolades affirm not only scientific merit but also the capacity to influence engineering practice and inspire future directions in material innovation.

🌍 IMPACT AND INFLUENCE IN THE FIELD

The influence of this work extends from scholarly circles to practical engineering domains. Research findings have contributed to redefining the performance expectations of cement-based materials, especially through the integration of graphene, nanofillers, and advanced polymers. Insights into interfacial behavior and microstructure evolution inform the design of more durable and adaptable infrastructure materials. Tools such as deep learning for microstructure analysis and the development of radiative cooling surfaces contribute to energy sustainability in urban environments. The cross-disciplinary nature of the research—bridging physics, chemistry, materials science, and structural engineering—has spurred innovations not only in academia but also in real-world construction technology. The vision integrates societal challenges such as climate change, urban resilience, and material scarcity with scientific discovery. Through mentorship, collaboration, and publication, this impact resonates across continents, cementing a legacy of meaningful contributions to engineering science and applied material innovation.

🧭 LEGACY AND FUTURE CONTRIBUTIONS

Future directions aim to deepen the integration of artificial intelligence, sustainable design, and material innovation in civil infrastructure. A continued focus on nanotechnology will advance the development of smart materials capable of self-sensing, environmental adaptability, and long-term durability. The ambition includes scaling laboratory findings into industry-ready solutions that align with carbon-neutral goals and low-energy construction practices. By collaborating across universities, government bodies, and private sectors, forthcoming work will drive translational research that reshapes construction from the molecular scale up. Educational leadership at Zhengzhou University ensures a growing influence on the next generation of engineers and scientists, embedding a culture of sustainability and scientific rigor. As global challenges intensify—urbanization, climate stress, and material limitations—the research path set forth offers a blueprint for innovation. The evolving legacy remains one of transformation, dedication, and vision, contributing decisively to both the knowledge economy and the resilience of future infrastructures.

NOTABLE PUBLICATIONS

Title: Experimental study on the shearing mechanical behavior of contact surface between polydimethylsiloxane modified polyaspartate polyurea and concrete
Journal: Construction and Building Materials (2025)

Title: A Deep Learning-Based Study of the Role of Graphene Oxide Nanosheets on the Microstructure of Cement Paste
Journal: ACS Applied Nano Materials (2025)

Title: Experimental Study on the Strengthening Effect of Polyaspartate Polyurea Lining on Concrete Pipes
Journal: Journal of Applied Polymer Science (2025)

Yaoqing Gong – Structural Engineering – Best Researcher Award

Yaoqing Gong - Structural Engineering - Best Researcher Award

Henan Polytechnic University - China

AUTHOR PROFILE

SCOPUS
ORCID

SUMMARY

Yaoqing Gong is a distinguished academic in civil and structural engineering, currently serving as Chair Professor at Henan Polytechnic University. With over four decades of teaching, research, and engineering practice, the expertise encompasses semi-analytical structural analysis, finite element modeling, and torsional analysis of complex structures. Editorial roles, committee memberships, and national-level research projects illustrate a strong reputation in academia. Recognized by leading institutions in China, including the Ministry of Education and National Natural Science Foundation, the work influences tall building mechanics and computational analysis. Extensive publications and involvement in conference proceedings highlight an active presence in both theoretical and applied engineering domains.

EDUCATION

Completed a Ph.D. in Civil Engineering at Tsinghua University, renowned for engineering excellence. Previously earned a Master’s degree in Mechanical Engineering from Huazhong University of Science and Technology and a Bachelor’s degree from Ningxia University. The academic progression reflects a deep foundation in engineering sciences, transitioning from mechanical to civil specializations. The multidisciplinary training has significantly shaped advanced research contributions in structural mechanics, particularly in analyzing super-tall buildings and complex beam structures. The educational journey through top-tier Chinese institutions has laid the groundwork for a highly productive academic and research career across decades in civil infrastructure development and modeling.

PROFESSIONAL EXPERIENCE

Began academic career as Assistant Lecturer at Ningxia University, progressing through Lecturer, Associate Professor, and Professor roles from 1981 to 2001. Since 2001, appointed as Chair Professor at Henan Polytechnic University, leading major initiatives in structural engineering. Held several key academic responsibilities, contributing to curriculum design and research mentorship. A strong connection with national academic bodies such as the Ministry of Education and NSF of China has ensured relevance and impact in teaching and applied research. Professional duties have also extended to evaluating high-level research proposals and participating in national engineering education committees, reflecting trust and leadership in the field.

RESEARCH INTEREST

Core research interests include semi-analytical methods for analyzing dynamic loads on super-tall buildings and long-span bridges, torsional behavior of noncircular beam sections, and structural interactions with elastic subgrades. Work is heavily focused on theoretical mechanics, generalized-area-coordinate systems, and conforming finite element formulations. Special emphasis is placed on dynamic load modeling and the interaction between foundation and superstructures, particularly under spatial or multi-directional loading. Research bridges practical civil infrastructure challenges with computational mechanics innovation, advancing knowledge in constrained torsion and spatial vibration of complex geometries. Integration of analytical theory and real-world applications characterizes all research endeavors and academic outputs.

AWARD AND HONOR

Honored with roles that reflect academic prestige, including Editorial Board Membership in the Journal of Engineering Mechanics (Chinese) and Committee Member of the Mechanics Instruction Committee, Ministry of Education, China. Selected as a referee for high-impact national research proposals under the Department of Engineering & Material Science, NSF of China. Contributions to national research projects and leadership in university-affiliated foundations also serve as testimony to recognition by peers. The ability to influence educational and research standards at national levels is a distinguishing achievement. These roles underscore trust, influence, and merit across China’s academic and engineering science communities.

RESEARCH SKILL

Expert in developing semi-analytical and finite element models for structural analysis under dynamic and complex boundary conditions. Advanced in formulating generalized conforming finite elements and utilizing generalized-area-coordinate systems. Skilled in solving torsional behavior for constrained, variable thickness beams with arbitrary noncircular shapes. Familiar with both theoretical development and application to large-scale infrastructure such as super-tall buildings and bridges. Possesses hands-on design experience, including work with steel tower structures for astronomical observatories. Capable of integrating analytical theory with field application, contributing both to academia and practical engineering. Strong background in mathematical modeling, ODE solvers, and high-performance structural analysis.

PUBLICATIONS TOP NOTED

Published in prestigious journals such as Composite Structures, Engineering Structures, European Journal of Mechanics/A Solids, and MethodsX. Key contributions include innovative constrained torsional analysis, theories for stocky beams with noncircular cross-sections, and finite element formulations for thick plate-shell elements. Authored books like “Structural Mechanics” and “Tall Building Structures on Elastic Subgrade,” which serve as foundational texts in Chinese structural engineering education. Presented work at global conferences including the World Congress on Computational Mechanics. Collaborated with notable researchers on interdisciplinary projects, ensuring international visibility. Research outputs continue to shape methodologies used in modern civil engineering and computational structural mechanics.

Title: Composite stocky box girders of variable thickness in high-support expressways: Constrained torsional analysis
Authors: [Not specified]
Journal: Engineering Structures (2021)

Title: An innovative method for surmounting the constrained torsional problems of stocky beams with arbitrary noncircular cross-sectional shapes and with arbitrary elastic material properties
Authors: [Not specified]
Journal: MethodsX (2021)

Title: The torsional centre position of stocky beams with arbitrary noncircular cross-sectional shapes and with arbitrary elastic material properties
Authors: [Not specified]
Journal: European Journal of Mechanics A: Solids (2021)

CONCLUSION

Yaoqing Gong’s contributions span theoretical development, practical design, high-level academic mentorship, and national-level advisory roles. Strong expertise in civil and structural engineering mechanics is demonstrated through sustained publications, impactful research funding, and leadership roles within Chinese engineering education. The emphasis on semi-analytical methods and computational mechanics provides critical solutions for modern engineering problems such as super-tall structures, complex torsional analysis, and elastic subgrade interaction. Through integration of teaching, research, and applied science, continues to influence both academic frameworks and infrastructure practices. The profile stands as a model of excellence in civil engineering innovation, research integrity, and academic leadership.

Lewis John Gooch – Structural Engineering – Best Researcher Award

Lewis John Gooch - Structural Engineering - Best Researcher Award

The University of Newcastle - Australia

AUTHOR PROFILE

SCOPUS
ORCID
GOOGLE SCHOLAR

SUMMARY

Lewis John Gooch is a dedicated civil engineer and postdoctoral research associate specializing in structural reliability and masonry design. With academic and professional experience in seismic performance analysis, numerical modelling, and experimental mechanics, Lewis contributes to advancing safer, more resilient infrastructure. His work intersects engineering theory, laboratory experimentation, and practical design, producing high-impact research publications and real-world engineering solutions. Recognized with numerous academic and industry awards, Lewis has established strong collaborative ties with research institutions and industry stakeholders. His career reflects a strong commitment to engineering excellence, scholarly advancement, and impactful industry engagement within the Australian civil and structural engineering landscape.

EDUCATION

Lewis completed his Ph.D. in Civil Engineering at The University of Newcastle, focusing on stochastic assessment and structural reliability of unreinforced masonry walls under shear loading. Prior to this, he earned a Bachelor of Civil Engineering (Honours) with University and Faculty Medals, demonstrating exceptional academic performance. He also pursued the Academic Career Preparation Pathway, gaining university teaching competencies. These educational milestones have equipped him with expertise in structural mechanics, probabilistic modelling, and engineering pedagogy, forming a strong foundation for his academic and professional career. His academic training continues to inform his research into innovative and reliable construction design methodologies.

PROFESSIONAL EXPERIENCE

Lewis currently serves as a Postdoctoral Research Associate at the University of Technology Sydney, leading efforts to calibrate masonry design standards under ARC Discovery Project DP220102758. Concurrently, at The University of Newcastle, he contributes to infrastructure performance through digital image correlation and laboratory test development. Formerly a structural engineer at Lindsay Dynan, he managed complex assessments of bridges, concrete structures, and scaffolding systems. These roles demonstrate a seamless transition from professional engineering to high-level research, with responsibilities including supervision of students, development of experimental methods, and national code contributions—showcasing a rare blend of academic insight and practical engineering skill.

RESEARCH INTEREST

Lewis's research explores the intersection of structural engineering, material behaviour, and probabilistic modelling. His primary focus is on the performance of unreinforced masonry (URM) structures under seismic and wind loads. He develops stochastic models to simulate spatial variability and uses finite element analysis to evaluate structural response. Additionally, he investigates material uncertainties, structural reliability, and safety factor calibration within Australian design codes. His interests extend to experimental validation using high-resolution testing methods. Lewis aims to reduce risk in civil infrastructure through improved understanding of material properties and modelling uncertainties—providing engineering solutions backed by scientific rigour and innovation.

AWARD AND HONOR

Lewis has earned multiple prestigious accolades for academic and industry excellence. These include the University Medal and Faculty Medal from The University of Newcastle, along with consistent recognition on the Dean’s Merit and Commendation Lists. He has received industry awards such as the Engineers Australia Prize, Douglas Partners Prize for Applied Geotechnics, and Steel Reinforcement Institute of Australia Award. These distinctions highlight his exceptional performance in both technical proficiency and academic scholarship. His awards reflect a career marked by excellence in geotechnics, water engineering, structural analysis, and masonry design, positioning him as a rising leader in civil engineering research.

RESEARCH SKILL

Lewis demonstrates expertise in high-resolution digital image correlation, finite element modelling, and stochastic analysis of masonry structures. He is proficient in developing and validating experimental testing methods, including shear and tensile strength characterization. He applies statistical models to quantify material variability and risk in structural performance, contributing to design standard calibration. His experience in software tools for structural simulation and data interpretation supports comprehensive model validation. Furthermore, he provides supervision and technical mentorship across undergraduate and postgraduate levels. His research skillset reflects a deep integration of theoretical understanding, practical experimentation, and computational engineering, essential for advancing structural reliability.

PUBLICATIONS TOP NOTED

Lewis has authored influential journal articles and conference papers in leading engineering venues. Noteworthy publications include studies on mortar friction coefficients, URM shear wall behaviour, and statistical assessment of clay brick masonry—appearing in journals like Construction and Building Materials, Journal of Structural Engineering, and Bulletin of Earthquake Engineering. His work is widely cited for advancing knowledge in masonry design, model uncertainty, and stochastic structural analysis. He has also presented internationally on life-cycle monitoring and structural safety. His contributions play a critical role in refining seismic design methods and improving structural resilience, bridging academic research with engineering practice.

Title: Accuracy of stochastic finite element analyses for the safety assessment of unreinforced masonry shear walls
Authors: Lewis J. Gooch, Mark G. Stewart, M. J. Masia
Journal: Civil Engineering and Environmental Systems

Title: Experimental characterisation of the friction coefficient of mortar bed joints in clay-brick masonry
Authors: Lewis J. Gooch, Mark J. Masia, Mark G. Stewart, Michele Spadari
Journal: Construction and Building Materials

Title: Experimental Testing of Unreinforced Masonry Shear Walls and Comparison with Nominal Capacity Predictions
Authors: Lewis J. Gooch, Mark J. Masia, Mark G. Stewart, Md. Akhtar Hossain
Journal: Journal of Structural Engineering

Title: Model accuracy for the prediction of unreinforced clay brick masonry shear wall resistance
Authors: Lewis J. Gooch, Mark G. Stewart, Mark J. Masia
Journal: Bulletin of Earthquake Engineering

Title: Spatial Correlation of Flexural Tensile Bond Strength in Unreinforced Masonry Walls
Authors: Lewis J. Gooch, M. J. Masia, Mark G. Stewart, C. Collard
Journal: Lecture Notes in Civil Engineering

Title: Statistical assessment of tensile and shear properties of unreinforced clay brick masonry
Authors: Lewis J. Gooch, Mark J. Masia, Mark G. Stewart, Chee Yin Lam
Journal: Construction and Building Materials

CONCLUSION

Lewis John Gooch exemplifies the qualities of a modern structural engineering researcher: analytically rigorous, experimentally adept, and industry-aware. His commitment to enhancing infrastructure resilience through advanced modelling and testing informs both academic discourse and practical design. Recognized for academic excellence and industry contribution, Lewis's career continues to evolve through impactful research, scholarly publications, and teaching. With his focus on masonry structures and structural reliability, he contributes meaningfully to national design standards and global understanding of risk-informed engineering. His trajectory highlights a promising future as a thought leader in civil engineering innovation and infrastructure safety assessment.

Faustyn Recha – Structural Engineering – Academic Achievement in Civil Engineering Award

Faustyn Recha - Structural Engineering - Academic Achievement in Civil Engineering Award

Academy of Silesia - Poland

AUTHOR PROFILE

SCOPUS
ORCID
GOOGLE SCHOLAR

SUMMARY

Faustyn Recha is a civil engineer and academic specializing in reinforced concrete structures and corrosion mechanics. Known for integrating numerical modeling with structural engineering, contributions span across research, teaching, and professional practice. Focus areas include degradation modeling of reinforced concrete due to corrosion, structural mechanics, and practical innovations in building technology. Recha has presented findings at major international conferences and led seminars on cutting-edge topics in structural durability. The research is characterized by deep experimental validation and interdisciplinary collaboration. Engagements with institutions across Europe, the USA, and Asia demonstrate a strong global academic and industrial footprint.

EDUCATION

Earned a Ph.D. in engineering and technical sciences with a specialization in civil engineering and transport from the Silesian University of Technology. Completed both bachelor's and master's degrees in construction engineering, specializing in Building and Engineering Structures, from the Częstochowa University of Technology. Education journey combined strong academic performance with early practical exposure, laying the groundwork for expertise in reinforced concrete and structural analysis. The doctoral dissertation addressed the degradation of reinforced concrete structures caused by reinforcement corrosion, showcasing theoretical innovation supported by experimental data. This academic path equipped Recha with skills vital for high-impact scientific and technical roles.

PROFESSIONAL EXPERIENCE

Currently serves as Assistant Professor at the Academy of Silesia in Katowice, contributing to teaching, research, and coordination within the Civil Engineering, Geodesy, and Transport discipline. Gained experience through prior design studio work and technical supervision roles. Served internships in Germany and Slovakia, focusing on concrete durability and structural analysis. Has held responsibilities in teaching structural mechanics, corrosion science, and advanced construction methods. Practical contributions include over 200 construction projects, technical evaluations, and design solutions. Verified experience in managing construction sites and coordinating with municipalities and industry professionals, ensuring real-world application of academic expertise.

RESEARCH INTEREST

Research interests revolve around the durability and mechanics of reinforced concrete structures, particularly degradation mechanisms triggered by reinforcement corrosion. Investigates thermomechanical modeling, numerical simulation, and probabilistic assessments of structural failure. Current focus includes developing non-invasive methods for estimating corrosion current density through structural deflection analysis. Engages in experimental and theoretical studies to enhance modeling precision and reliability. Other interests encompass geopolymer materials, utility-based mix design optimization, and interval analysis for material degradation. These research areas reflect an integration of structural theory with emerging technologies in material science, contributing to safer and more durable infrastructure.

AWARD AND HONOR

Recognized with several academic distinctions, including a scholarship from the Rector of the Silesian University of Technology. Earned second place in the young scientists’ poster session at the 66th Scientific Conference of the Polish Academy of Sciences. Achieved notable rankings in the "Modern Engineer" technical knowledge competitions. Actively invited as a reviewer for international journals and speaker at prestigious conferences. Recha’s achievements reflect continuous contributions to civil engineering and academic excellence. Ongoing innovations, including a pending patent for prefabricated slab connections, underline a commitment to impactful engineering practices and scientific advancement.

RESEARCH SKILL

Highly skilled in structural modeling, experimental mechanics, advanced FEM simulations, and degradation analysis of reinforced concrete. Proficient in formulating thermomechanical models and corrosion-related strain tensors. Experienced in Monte Carlo simulation for sensitivity analysis, non-invasive diagnostic techniques, and concrete mix design optimization. Adept at scientific writing, technical reporting, and cross-disciplinary collaboration. Skilled in preparing structural design documentation and assessing the condition of existing structures. Familiar with patent development and engineering innovation processes. Expertise spans both laboratory-based experimental methods and computational modeling, enabling comprehensive investigation and application in structural engineering challenges.

PUBLICATIONS TOP NOTED

Published in leading journals such as Materials, Open Engineering, and Przegląd Budowlany. Notable works include the formulation and experimental verification of models estimating corrosion current in reinforced concrete, assessments of structural degradation, and optimization of geopolymer mortar mixes. Recent articles explore interval analysis in concrete degradation and innovative techniques in non-invasive corrosion measurement. Contributions are often co-authored with international collaborators, reflecting broad engagement with global research communities. Participation in conference proceedings and edited volumes further amplifies the academic footprint. Publications address both theoretical frameworks and practical applications, aligning scholarly impact with industry relevance.

Title: Zasady przeprowadzania okresowych badań technicznych obiektów budowlanych w zakresie bezpieczeństwa i użytkowania
Authors: F. Recha, P. Nagel
Journal: BUILDER

Title: Application of Interval Analysis to Assess Concrete Cover Degradation in Accelerated Corrosion Tests
Authors: F. Recha, K. Yurkova, T. Krykowski
Journal: Materials

Title: Estimation method of corrosion current density of RC elements
Author: F. Recha
Journal: Open Engineering

Title: Application of a Generalized Utility Function to Determine the Optimal Composition of Geopolymer Mortar
Authors: M. Kępniak, F. Recha, P. Prochoń
Journal: Materials

Title: Experimental Verification of the Model for Estimating the Corrosion Current of Reinforcement in an RC Element
Authors: F. Recha, W. Raczkiewicz, K. Bacharz, A. Wójcicki, P. Bujňáková, P. Koteš
Journal: Materials

CONCLUSION

Faustyn Recha demonstrates a strong integration of academic knowledge and practical expertise in civil engineering. Research activities, teaching engagements, and industrial collaborations reflect a commitment to innovation, precision, and long-term infrastructure sustainability. By focusing on corrosion-induced degradation and material performance, Recha contributes meaningfully to modern construction challenges. Recognition from academic and professional circles confirms the value and originality of the work. Continued development of new methods, publication of impactful findings, and involvement in structural innovation underline the role as a thought leader in civil engineering and material durability.

Shujie Qin – Timber structures – Best Researcher Award

Shujie Qin - Timber structures - Best Researcher Award

Hainan University - China

AUTHOR PROFILE

SCOPUS
ORCID

SUMMARY

Shujie Qin is a dynamic researcher in Civil Engineering, specializing in timber and composite structures, corrosion behavior of building materials, and structural analysis of heritage constructions. With a strong academic and research foundation rooted in leading Chinese institutions and enhanced by international collaboration, he has significantly contributed to the understanding of deterioration mechanisms and reinforcement strategies for historical structures. His analytical approaches and experimental investigations reflect a solid blend of theoretical depth and practical relevance, particularly in safeguarding architectural heritage through innovative engineering solutions.

EDUCATION

Shujie Qin completed his undergraduate and doctoral studies in Civil Engineering at Beijing Jiaotong University, where he was mentored by Prof. Yang Na. During his doctoral research, he enriched his academic perspective as a visiting scholar at Western Sydney University under Prof. Xinqun Zhu. This international exposure broadened his expertise in structural performance evaluation and corrosion analysis. His educational journey has been marked by rigorous training in both experimental and analytical methodologies essential for studying traditional and modern civil engineering systems.

PROFESSIONAL EXPERIENCE

Shujie Qin has gained hands-on experience through national and regional research projects focused on structural integrity and restoration. He has led and participated in programs funded by the National Natural Science Foundation of China and Hainan Provincial foundations, addressing complex issues in heritage timber frameworks and atmospheric corrosion. His work spans structural diagnostics, material degradation studies, and load-carrying capacity analysis. His research supports the preservation of historical architecture while contributing to the durability and sustainability of future constructions.

RESEARCH INTEREST

His primary research interests include the structural performance and restoration of ancient timber buildings, corrosion and deterioration of construction materials in harsh climates, and timber-steel composite behavior. Shujie Qin focuses on evaluating and enhancing the mechanical properties of historical timber joints, especially under damaged conditions. He is also interested in developing time-dependent deterioration models for steel in tropical environments. His research aims to bridge the gap between modern engineering practices and the conservation of cultural heritage through structural innovation.

AWARD AND HONOR

Shujie Qin has received competitive funding under prestigious schemes like the National Natural Science Foundation of China for Young Scholars and the Hainan Provincial High-Level Talents Program. These recognitions affirm the relevance and scientific merit of his research in structural engineering and material durability. His selection for leadership roles in national and institutional research initiatives reflects his growing reputation as a promising young scholar in the field of civil and structural engineering, particularly in historical conservation and sustainable infrastructure development.

RESEARCH SKILL

Shujie Qin is proficient in structural analysis, experimental mechanics, corrosion modeling, and dynamic simulation. He is skilled in using analytical tools for evaluating structural degradation and designing reinforcement strategies for heritage buildings. His technical expertise includes load-carrying capacity assessment, time-dependent deterioration modeling, and dynamic performance analysis of beam-column joints. He has hands-on experience in field investigations, laboratory simulations, and developing predictive models based on empirical data—especially within the context of timber structure behavior and environmental impact.

PUBLICATIONS

 

Title: Experimental investigation and evaluation of metal-plate-connected laminated bamboo lumber joints
Authors: T.Y. Li, J.Q. Chen, P.C. Qin, Y. Xiao, B. Shan, Y.F. Yang, S.J. Qin, X.L. Fu
Journal: Construction and Building Materials


Title: Mechanical behavior of glued-in GFRP rod in glubam: Experimental and analytical study
Authors: T.Y. Li, J.Q. Chen, Y. Xiao, J. Zhang, B. Shan, S.Q. Dai, S.J. Qin, B. Huang
Journal: Construction and Building Materials


Title: Bending performance of nail-laminated bamboo-timber panels made with glubam and fast-grown plantation Chinese fir
Authors: T.Y. Li, J.Y. Deng, J.Q. Chen, Y. Xiao, B. Shan, H. Xu, S.J. Qin, Q. Yu
Journal: Construction and Building Materials


Title: Experimental research on standardized bamboo culm components for developing prefabricated bamboo building
Authors: Bo Shan, Ji Qiu, Hao Xu, Tianyu Li, Yan Xiao, Shujie Qin, Li Gao, Zhi Li
Journal: Structures


Title: Rotational Behavior of Column Footing Joint and Its Effect on the Dynamic Characteristics of Traditional Chinese Timber Structure
Authors: Shujie Qin, Na Yang, Lu Dai, Sergio De Rosa
Journal: Shock and Vibration

CONCLUSION

Through an integrated approach to historical preservation and material performance analysis, Shujie Qin is redefining the role of civil engineering in cultural heritage protection. His research not only enhances structural safety but also supports sustainability by prolonging the service life of ancient and modern materials. With a strong track record in competitive research, academic publication, and interdisciplinary collaboration, he continues to impact the fields of timber structure analysis and corrosion engineering. His work stands at the intersection of tradition, science, and engineering advancement.

Theo Glashier – Structural Health Monitoring – Best Researcher Award

Theo Glashier - Structural Health Monitoring - Best Researcher Award

Imperial College London - United Kingdom

AUTHOR PROFILE

GOOGLE SCHOLAR
SCOPUS
ORCID

SUMMARY

Theo Glashier is a motivated PhD student at Imperial College London specializing in infrastructure monitoring and structural health assessment. His research focuses on data-driven strategies for interpreting measurement data from civil infrastructure under varying environmental conditions. With a keen interest in applying statistical methods and machine learning, Theo aims to advance real-time performance evaluations of critical structures. His hands-on experience includes working with the MX3D 3D-printed steel bridge and mentoring Master’s students. He is actively involved in academic dissemination and conference participation, laying the foundation for a promising research career in civil infrastructure health monitoring.

EDUCATION

Theo is currently completing his PhD in Civil and Environmental Engineering at Imperial College London (2021–2024), with a thesis focused on temperature-based measurement interpretation in critical civil infrastructure. He holds a First-Class Honours MEng in Mechanical Engineering from the University of Sheffield (2015–2019). His academic path includes a strong foundation in solid mechanics, structural dynamics, and nonlinear system analysis. His undergraduate and postgraduate studies have consistently emphasized research-led innovation, reflected in high-impact projects and publications. He has developed specialized expertise in regression models, machine learning applications, and sensor-based structural monitoring techniques.

PROFESSIONAL EXPERIENCE

Theo’s experience spans academia and industry. He worked at Total Energies in France (2019–2020) managing large-scale sensor data from offshore assets, leading a CO₂ monitoring initiative, and building a data infrastructure in PI System. He also contributed to NASA’s High-Altitude Student Platform via Project Sunbyte, launching a balloon-mounted solar flare imaging system. His research career includes fieldwork on the MX3D Bridge in Amsterdam and multiple in-person large-scale structural tests. He has developed strong communication skills through presenting at global conferences and managing collaborative research efforts with both academic and industrial stakeholders.

RESEARCH INTEREST

Theo is passionate about structural health monitoring and real-time infrastructure assessment. His core research explores data preparation techniques to filter environmental and operational variability from structural measurements. He integrates statistical regression, machine learning, and high-performance computing to derive accurate and interpretable predictions from complex datasets. Current projects focus on temperature-based interpretations and long-term monitoring strategies for steel bridges. His work advances the application of smart sensors and computational modeling in civil engineering, aiming to enhance the resilience, safety, and longevity of critical infrastructure systems through automated diagnostics and predictive analytics.

AWARD AND HONOR

Theo has earned several academic honors, including the Skempton PhD Scholarship and 2nd Prize at the Imperial College PhD Summer Showcase 2023. He received research travel grants such as the Milija Pavlovic Fund and institutional support to attend leading conferences like EWSHM and IABMAS 2024. His presentation skills led to an invitation to speak at the 25th Young Researchers Conference. These accolades reflect his exceptional contributions to structural monitoring research, recognized by both academic peers and industry professionals. They also underscore his ability to communicate complex findings to diverse audiences.

RESEARCH SKILL

Theo has advanced technical proficiency in Python, Matlab, and C, alongside hands-on expertise in SolidWorks, Ansys, and PI System for data acquisition. He is well-versed in machine learning for regression analysis, statistical data filtering, and signal visualization. His practical experience includes designing and deploying sensor networks, conducting in-situ structural testing, and high-performance computing for large datasets. He is multilingual, fluent in English and French, and conversational in Italian and Spanish. His interdisciplinary skill set equips him to manage complex infrastructure datasets and lead data-centric engineering projects with both academic and commercial stakeholders.

PUBLICATIONS

Title: Temperature-based measurement interpretation of the MX3D Bridge
Authors: T. Glashier, R. Kromanis, C. Buchanan
Journal: Engineering Structures, Vol. 305, Article 116736, 2024

Title: An iterative regression-based thermal response prediction methodology for instrumented civil infrastructure
Authors: T. Glashier, R. Kromanis, C. Buchanan
Journal: Advanced Engineering Informatics, Vol. 60, Article 102347, 2024

Title: Temperature-based Damage Detection for the Commissioning Dataset of the MX3D Bridge
Authors: T. Glashier, R. Kromanis, C. Buchanan
Journal: 11th European Workshop on Structural Health Monitoring (EWSHM), 2024

Title: Thermal response prediction of the MX3D bridge's operational dataset
Authors: T. Glashier, C. Buchanan, R. Kromanis
Journal: Bridge Maintenance, Safety, Management, Digitalization and Sustainability, 2024

Title: Predicting the environmental response of critical infrastructure, using the first metal 3D printed structure as a case study
Author: T. Glashier
Journal: Proceedings of the 25th Young Researchers Conference, 2023

CONCLUSION

Theo Glashier exemplifies the new generation of civil engineers driving innovation in structural health monitoring. His blend of technical skill, academic dedication, and practical experience positions him as a rising contributor to resilient infrastructure systems. With a clear vision for a research-led career, he seeks to bridge the gap between data science and civil engineering. His work not only provides scientific insight but also addresses real-world challenges in maintaining and assessing the health of built environments. Theo’s research trajectory reflects excellence, innovation, and a strong commitment to societal infrastructure advancement.