Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

Saad A. A. Jabir | Structural Health Monitoring | Research Excellence in Civil and Environmental Engineering Award

CEO | Nur Engineering GmbH | Germany

Saad A. A. Jabir’s research focuses on advancing condition monitoring and structural health assessment within civil engineering, emphasizing innovative sensor-based approaches for real-time evaluation of infrastructure performance. His primary contributions are in the development and application of thick-film ceramic sensors for measuring the strength and stability of civil structures. Jabir’s work demonstrates the potential of these sensors in providing accurate, durable, and responsive measurements that enhance the reliability and safety of infrastructure systems. Through his publications, he explores the integration of sensing technology into civil structures, enabling continuous monitoring that aids in preventive maintenance and early fault detection. His research also intersects materials science and measurement engineering, with attention to improving sensor materials’ thermal and mechanical resilience for field applications. By addressing challenges such as environmental variability and long-term stability of sensor outputs, Jabir contributes to making structural monitoring systems more adaptive and cost-effective. His studies have significant implications for modern smart infrastructure and sustainable construction practices, providing valuable insights into how sensor technologies can be scaled for large-scale engineering projects. His collaborative work reflects an interdisciplinary approach combining electrical engineering, materials research, and civil infrastructure monitoring to create robust diagnostic systems for critical assets. Saad A. A. Jabir’s research output, though concise, holds impactful applications for modern infrastructure management and reliability improvement in engineering systems. 60 Citations 3 Documents 2 h-index

Profile: Scopus
Featured Publications:

Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors. (2013). Measurement: Journal of the International Measurement Confederation.

Zhou Ji | FRP reinforced concrete structure | Best Researcher Award

Zhou Ji | FRP Reinforced Concrete Structure | Best Researcher Award

Associate Professor | Nanjing Forestry University | China

Zhou Ji is a dedicated civil engineering researcher specializing in steel–concrete composite structures and marine or offshore concrete systems, with extensive academic and practical expertise in structural performance and durability. As a doctoral researcher at Guangxi University under Professor Zongping Chen, Zhou has contributed significantly to the understanding of mechanical behaviors, bond characteristics, and seismic performance of advanced composite materials. Zhou has led one Guangxi postgraduate education innovation project and participated in six national and provincial-level research programs focusing on areas such as high-temperature damage assessment, corrosion-resistant marine concrete, and long-lifespan transport hub structures. The research has resulted in 9 SCI-indexed papers and 10 EI-indexed papers as the first author, including publications in high-impact journals like Engineering Structures, Construction and Building Materials, and Journal of Composites for Construction-ASCE. Zhou’s studies on CFRP-steel composite bars in coral sea-sand seawater concrete have provided key insights into bond behavior, structural strength, and post-fire performance, contributing to sustainable marine construction. In addition to academic publications, Zhou has secured four national patents and participated in developing a Guangxi provincial standard. Recognition of excellence includes numerous national and provincial scholarships and awards, such as the Liu Huixian Earthquake Engineering Award and multiple National Scholarship distinctions. The research achievements reflect a deep commitment to advancing composite structural technologies that enhance resilience and sustainability in coastal infrastructure. With a strong foundation in both experimental and numerical analysis, Zhou continues to explore innovative materials and design approaches that address environmental challenges in modern civil engineering. 409 Citations, 16 Documents, and an h-index of 11

Chen, Z., Zhou, J., Jing, C., & Tan, Q. (2021). Mechanical behavior of spiral stirrup reinforced concrete filled square steel tubular columns under compression. Engineering Structures, 226, 111377.

Chen, Z., Xu, W., & Zhou, J. (2022). Mechanical performance of marine concrete filled CFRP–aluminum alloy tube columns under axial compression: Experiment and finite element analysis. Engineering Structures, 272, 114993.

Chen, Z., Li, S., Zhou, J., Xu, R., & Dai, S. (2022). Flexural behavior of GFRP bars reinforced seawater sea sand concrete beams exposed to marine environment: Experimental and numerical study. Construction and Building Materials, 349, 128784.

Chen, Z., Pang, Y., Xu, R., Zhou, J., & Xu, W. (2022). Mechanical performance of ocean concrete-filled circular CFRP–steel tube columns under axial compression. Journal of Constructional Steel Research, 198, 107514.

Zhou, J., Chen, Z., Chen, Y., Song, C., Li, J., & Zhong, M. (2022). Torsional behavior of steel reinforced concrete beam with welded studs: Experimental investigation. Journal of Building Engineering, 48, 103879.

Azunna Sunday | Structural Engineering | Best Researcher Award

Mr. Azunna Sunday | Structural Engineering | Best Researcher Award

Doctoral Researcher | Housing research centre | Malaysia

Mr. Azunna Sunday Ugochukwu has established a strong professional and research background in civil and structural engineering, with notable expertise in sustainable construction materials, structural analysis, and project management. His career includes extensive work in both academic and industrial settings, where he contributed to the design and execution of major infrastructure projects such as residential complexes, university facilities, religious centers, and extensive road networks across Nigeria. At Universiti Putra Malaysia, his research has focused on innovative materials for civil engineering applications, including coconut shell, palm kernel shell, recycled bricks, granite powder, and rubberized geopolymer concrete, leading to multiple publications in reputable international journals. His scholarly contributions span experimental and review studies, addressing compressive strength, stress-strain behavior, and dynamic response of advanced concrete materials, demonstrating his capacity to integrate environmental sustainability with engineering performance. Beyond research, Azunna has engaged in professional workshops on structural modeling, design, and detailing, sharing expertise with institutions such as Federal Polytechnic Bauchi and Abubakar Tafawa Balewa University. His memberships with COREN, the Nigerian Institution of Civil Engineers, and the Nigerian Society of Engineers affirm his commitment to professional standards and development within the engineering community. With experience as an assistant structural engineer, assistant project manager, and doctoral researcher, he has consistently demonstrated versatility in applying theoretical knowledge to practical engineering challenges. His skill set includes advanced structural design software, AutoCAD, drone operation, and engineering instrumentation, underscoring his technological adaptability. The scope of his executed projects—from institutional buildings to healthcare facilities and leisure parks—highlights his versatility and capacity to manage diverse engineering assignments effectively. His growing academic output, combined with practical project delivery, positions him as a significant contributor to advancing civil engineering knowledge and practice. Engr. Azunna Sunday Ugochukwu has achieved 120 Citations, 8 Documents, and 5 h-index.

Featured Publications:

Azunna, S. U. (2019). Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Applied Sciences, 1(4), 342.

Azunna, S. U., Aziz, F. N. A. A., Rashid, R. S. M., & Bakar, N. B. A. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237.

Azunna, S. U., Aziz, F. N. A. A., Cun, P. M., & Elhibir, M. M. O. (2019). Characterization of lightweight cement concrete with partial replacement of coconut shell fine aggregate. SN Applied Sciences, 1(6), 649.

Azunna, S. U., Aziz, F. N. A. A., Bakar, N. A., & Nasir, N. A. M. (2018). Mechanical properties of concrete with coconut shell as partial replacement of aggregates. IOP Conference Series: Materials Science and Engineering, 431(3), 032001.

Azunna, S. U., Aziz, F. N. A. B. A., Al-Ghazali, N. A., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225.

Lewis John Gooch – Structural Engineering – Best Researcher Award

Lewis John Gooch - Structural Engineering - Best Researcher Award

The University of Newcastle - Australia

AUTHOR PROFILE

SCOPUS
ORCID
GOOGLE SCHOLAR

SUMMARY

Lewis John Gooch is a dedicated civil engineer and postdoctoral research associate specializing in structural reliability and masonry design. With academic and professional experience in seismic performance analysis, numerical modelling, and experimental mechanics, Lewis contributes to advancing safer, more resilient infrastructure. His work intersects engineering theory, laboratory experimentation, and practical design, producing high-impact research publications and real-world engineering solutions. Recognized with numerous academic and industry awards, Lewis has established strong collaborative ties with research institutions and industry stakeholders. His career reflects a strong commitment to engineering excellence, scholarly advancement, and impactful industry engagement within the Australian civil and structural engineering landscape.

EDUCATION

Lewis completed his Ph.D. in Civil Engineering at The University of Newcastle, focusing on stochastic assessment and structural reliability of unreinforced masonry walls under shear loading. Prior to this, he earned a Bachelor of Civil Engineering (Honours) with University and Faculty Medals, demonstrating exceptional academic performance. He also pursued the Academic Career Preparation Pathway, gaining university teaching competencies. These educational milestones have equipped him with expertise in structural mechanics, probabilistic modelling, and engineering pedagogy, forming a strong foundation for his academic and professional career. His academic training continues to inform his research into innovative and reliable construction design methodologies.

PROFESSIONAL EXPERIENCE

Lewis currently serves as a Postdoctoral Research Associate at the University of Technology Sydney, leading efforts to calibrate masonry design standards under ARC Discovery Project DP220102758. Concurrently, at The University of Newcastle, he contributes to infrastructure performance through digital image correlation and laboratory test development. Formerly a structural engineer at Lindsay Dynan, he managed complex assessments of bridges, concrete structures, and scaffolding systems. These roles demonstrate a seamless transition from professional engineering to high-level research, with responsibilities including supervision of students, development of experimental methods, and national code contributions—showcasing a rare blend of academic insight and practical engineering skill.

RESEARCH INTEREST

Lewis's research explores the intersection of structural engineering, material behaviour, and probabilistic modelling. His primary focus is on the performance of unreinforced masonry (URM) structures under seismic and wind loads. He develops stochastic models to simulate spatial variability and uses finite element analysis to evaluate structural response. Additionally, he investigates material uncertainties, structural reliability, and safety factor calibration within Australian design codes. His interests extend to experimental validation using high-resolution testing methods. Lewis aims to reduce risk in civil infrastructure through improved understanding of material properties and modelling uncertainties—providing engineering solutions backed by scientific rigour and innovation.

AWARD AND HONOR

Lewis has earned multiple prestigious accolades for academic and industry excellence. These include the University Medal and Faculty Medal from The University of Newcastle, along with consistent recognition on the Dean’s Merit and Commendation Lists. He has received industry awards such as the Engineers Australia Prize, Douglas Partners Prize for Applied Geotechnics, and Steel Reinforcement Institute of Australia Award. These distinctions highlight his exceptional performance in both technical proficiency and academic scholarship. His awards reflect a career marked by excellence in geotechnics, water engineering, structural analysis, and masonry design, positioning him as a rising leader in civil engineering research.

RESEARCH SKILL

Lewis demonstrates expertise in high-resolution digital image correlation, finite element modelling, and stochastic analysis of masonry structures. He is proficient in developing and validating experimental testing methods, including shear and tensile strength characterization. He applies statistical models to quantify material variability and risk in structural performance, contributing to design standard calibration. His experience in software tools for structural simulation and data interpretation supports comprehensive model validation. Furthermore, he provides supervision and technical mentorship across undergraduate and postgraduate levels. His research skillset reflects a deep integration of theoretical understanding, practical experimentation, and computational engineering, essential for advancing structural reliability.

PUBLICATIONS TOP NOTED

Lewis has authored influential journal articles and conference papers in leading engineering venues. Noteworthy publications include studies on mortar friction coefficients, URM shear wall behaviour, and statistical assessment of clay brick masonry—appearing in journals like Construction and Building Materials, Journal of Structural Engineering, and Bulletin of Earthquake Engineering. His work is widely cited for advancing knowledge in masonry design, model uncertainty, and stochastic structural analysis. He has also presented internationally on life-cycle monitoring and structural safety. His contributions play a critical role in refining seismic design methods and improving structural resilience, bridging academic research with engineering practice.

Title: Accuracy of stochastic finite element analyses for the safety assessment of unreinforced masonry shear walls
Authors: Lewis J. Gooch, Mark G. Stewart, M. J. Masia
Journal: Civil Engineering and Environmental Systems

Title: Experimental characterisation of the friction coefficient of mortar bed joints in clay-brick masonry
Authors: Lewis J. Gooch, Mark J. Masia, Mark G. Stewart, Michele Spadari
Journal: Construction and Building Materials

Title: Experimental Testing of Unreinforced Masonry Shear Walls and Comparison with Nominal Capacity Predictions
Authors: Lewis J. Gooch, Mark J. Masia, Mark G. Stewart, Md. Akhtar Hossain
Journal: Journal of Structural Engineering

Title: Model accuracy for the prediction of unreinforced clay brick masonry shear wall resistance
Authors: Lewis J. Gooch, Mark G. Stewart, Mark J. Masia
Journal: Bulletin of Earthquake Engineering

Title: Spatial Correlation of Flexural Tensile Bond Strength in Unreinforced Masonry Walls
Authors: Lewis J. Gooch, M. J. Masia, Mark G. Stewart, C. Collard
Journal: Lecture Notes in Civil Engineering

Title: Statistical assessment of tensile and shear properties of unreinforced clay brick masonry
Authors: Lewis J. Gooch, Mark J. Masia, Mark G. Stewart, Chee Yin Lam
Journal: Construction and Building Materials

CONCLUSION

Lewis John Gooch exemplifies the qualities of a modern structural engineering researcher: analytically rigorous, experimentally adept, and industry-aware. His commitment to enhancing infrastructure resilience through advanced modelling and testing informs both academic discourse and practical design. Recognized for academic excellence and industry contribution, Lewis's career continues to evolve through impactful research, scholarly publications, and teaching. With his focus on masonry structures and structural reliability, he contributes meaningfully to national design standards and global understanding of risk-informed engineering. His trajectory highlights a promising future as a thought leader in civil engineering innovation and infrastructure safety assessment.

Youwei Wang – Structural Health Monitoring – Best Researcher Award

Youwei Wang - Structural Health Monitoring - Best Researcher Award

Sun Yat-sen University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

📚 SUMMARY

Youwei Wang is an emerging scholar with a mission to bridge academic research and public health solutions for elderly populations. Grounded in empirical rigor and a humanistic outlook, his work reflects a dedication to uncovering structural determinants of health and crafting strategies for social support. Through data, dialogue, and dedication, he seeks to contribute to a world where aging is met with dignity, care, and scientific insight.

🎓 EARLY ACADEMIC PURSUITS

Youwei Wang began his academic journey with a profound interest in public health and social well-being, culminating in his current pursuit of a Ph.D. at Sun Yat-Sen University, one of China’s leading institutions. From the outset, Wang demonstrated a keen analytical mind and a desire to explore the intersections between family dynamics, mental health, and aging. His early training included comprehensive exposure to research methodology, data analysis, and community-based field studies. This foundation paved the way for advanced inquiries into the socio-psychological aspects of aging populations. His graduate education has been marked by both academic excellence and a strong drive to contribute original knowledge to the field of gerontology and social epidemiology.

🧑‍🔬 PROFESSIONAL ENDEAVORS

As a doctoral researcher, Youwei Wang has been engaged in a wide spectrum of interdisciplinary projects aimed at understanding the health challenges of older adults in China. His professional work includes the design and execution of quantitative studies examining the effects of intergenerational support, chronic diseases, and social capital on mental health outcomes. Collaborating with senior researchers and policy experts, he has actively contributed to multi-level studies involving structural equation modeling and longitudinal data analysis. His professional activities also include manuscript preparation, academic conference presentations, and assisting in teaching graduate courses, showcasing a well-rounded academic engagement.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Wang's primary research contributions center on geriatric health, intergenerational relationships, and health inequality. He has published five peer-reviewed articles in high-impact journals such as BMC Geriatrics and International Journal of Geriatric Psychiatry, analyzing complex psychosocial dynamics using sophisticated mediation and moderation models. His studies explore how pension systems, oral health, and family support interact with mental health, offering new insights into elder care policy and community health strategies. His proficiency in data analysis tools like Stata, Mplus, SPSS, and ArcGIS enhances the depth and rigor of his research, reinforcing his role as a methodological innovator in public health studies.

🏅 ACCOLADES AND RECOGNITION

Although still early in his academic career, Youwei Wang’s contributions have garnered attention in gerontological research circles. His ability to publish consistently in top-tier journals and to collaborate across disciplines highlights his scholarly merit. His inclusion as first or co-author on multiple studies demonstrates trust and recognition from his academic peers. His methodological versatility and insights into policy-relevant issues have made him a valued contributor in ongoing national and international health projects. These recognitions underscore his growing reputation as a thoughtful and reliable researcher committed to societal well-being.

🌍 IMPACT AND INFLUENCE

Wang’s research has significant implications for public health policy and aging society frameworks. By identifying the roles of social capital, built environment, and family structures in mental health, his work provides practical pathways for improving elderly care in urban and rural China. His findings have influenced community health planning and informed interventions aimed at reducing depressive symptoms in older adults. Beyond academia, his research promotes awareness about social support systems, encouraging evidence-based decision-making among healthcare practitioners and policymakers.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Looking forward, Youwei Wang aims to advance interdisciplinary research at the nexus of health equity, demographic aging, and social policy. He is committed to leveraging his expertise to develop scalable public health interventions that address mental health disparities among seniors. His future vision includes international collaborations that contextualize aging issues across different cultural and economic settings. With continued focus on quantitative modeling and policy application, he seeks to leave a legacy of actionable, inclusive research that improves quality of life for aging populations worldwide.

NOTABLE PUBLICATIONS

Title: Intergenerational support and depressive symptoms among older adults in rural China: the moderating roles of age, living alone, and chronic diseases

            Authors: Q. Sun, Y. Wang, N. Lu, S. Lyu

            Journal: BMC Geriatrics, Volume 22, Article 83 (2022)

Title: Oral health and depressive symptoms among older adults in urban China: a moderated mediation model analysis

           Authors: Q. Sun, Y. Wang, Q. Chang

           Journal: BMC Geriatrics, Volume 22, Article 829 (2022)